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LOW RANK METHODS IN SGIENTIFIC GOMPUTING

"Work sme®$-, not hard." -A.P. Morgenstern

data—-sparse

B*

>
%
N

o Discover/observe structures

o Understand them

o Exploit them

Low rank structure is one kind of data-sparsity



[OLOTAREV RATIONALS, GOMPLEX ANALYSIS, AND LOW RANK METHODS

Zolotarev’s approximation problems are central in many
applications in computational math and numerical linear algebra...

Y. l. Zolotarev

Progress on these problems requires us to venture into the complex plane.
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[OLOTAREV RATIONAL FUNGTIONS INSGIENTIFIG GOMPUTING

e Analysis of iterative solvers for matrix equations.
[Druskin, Knizhnerman and Simoninci (2011), Beckermann (2011)]

e Efficient solvers for Sylvester and Ricatti matrix equations.
[Benner, Bujanovic¢, Kiirshcher, and Saak (2018), Wong and Balakrishnan (2005).]

e Singular value decay in matrices with displacement structure.
[Beckermann and Townsend (2019), Sabino (2006), Rubin, Townsend and W. (2021) ]

e Compression properties in tensors/tensor train compression.
[Townsend and Shi, 2021]

e Fast solvers for certain linear systems Xy = b.
[Martinsson, Rokhlin, and Tygert (2005), Chandrasekaran, Gu, Xia, and Zhu (2007), Xia, Xi, and Gu (2012),
Beckermann, Kressner and W. (2021).]

e Optimal complexity solvers for some elliptic PDEs.
[Olver and Townsend (2013) , Fortunato and Townsend (2018), Townsend, W., Wright (2016,2017),

Boulle and Townsend (2019)]

e Solvers for PDEs involving the fractional Laplacian.
[Chen, Martinsson, W. ]

e Matrix evaluation of sign, square root, absolute value, inversion functions.
[(Gawlik and Nakatsukasa, 2019), (Hale, Higham, and Trefethen 2007)]

e Divide-and-conquer eigensolvers, polar decomposition algorithms.
[ Nakatsukasa and Freund (2016)]

e Digital filters in signal processing.
[ Daniels, R. (1974)]




[OLOTAREV RATIONAL FUNGTIONS INSGIENTIFIG GOMPUTING

e Analysis of iterative solvers for matrix equations.
[Druskin, Knizhnerman and Simoninci (2011), Beckermann (2011)]

e Efficient solvers for Sylvester and Ricatti matrix equations.
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1 ® Singular value decay in matrices with displacement structure:
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[Olver and Townsend (2013) , Fortunato and Townsend (2018), Townsend, W., Wright (2016,2017),
Boulle and Townsend (2019)]

e Solvers for PDEs involving the fractional Laplacian.
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e Matrix evaluation of sign, square root, absolute value, inversion functions.
[(Gawlik and Nakatsukasa, 2019), (Hale, Higham, and Trefethen 2007)]

e Divide-and-conquer eigensolvers, polar decomposition algorithms.
[ Nakatsukasa and Freund (2016)]

e Digital filters in signal processing.
[ Daniels, R. (1974)]



[OLOTAREV'S RATIONAL FUNGTIONS
THE 3D PROBLE

Y. |. Zolotarev

Given disjoint sets F/ and G in C,
find a rational function r € ‘R, that minimizes the ratio

SUp,c g |7(2)
inf,cq |r(z)]

The kth Zolotarev number associated with E and G:

Zu(E.G) = inf 2Pzer I"2)|
inf,cq |r(z)]




[OLOTAREV'S RATIONAL FUNGTIONS
THE 3D PROBLE

Key connection:
h _ exp(l/cap(E, G)) Y. l. Zolotarev

When E, G are disjoint disks in C:

o Z1,(E,G) = h~F, poles and zeros of r;, known.

When FE. G are disjoint intervals on the real line:

e Zi(F,G) given by an infinite product, poles and zeros of r; known.

° Zk(E,G) < 4h ="
E.G where C \ E' U G is doubly connected:

o h=F < Zk(E, G)
® limk_mO(Zk(E, G))l/k — h !

[(Zolotarev, 1877) (Starke, 1992) (Sabino, 2006), (Beckermann & Townsend, 2019), (Braess & Hackbusch, 2016), (GoncCar, 1969) |



[OLOTAREV'S RATIONAL FUNGTIONS
THE 4THPROBLEN

Y. |. Zolotarev

Given sets £/ and GG in C,

find a rational function 7 € R; that minimizes the error

_max_[sgn(z) —7(2)],

(

1, ze kL,
-1, zed.

sgn(z) = <

\

A

(B, G) = min max |sgn(z) — 17

[(Achieser, 1956) (Istace & Thiran, 1995)]



LOW RANK APPHUXIMATIUN

rank

Y

0p11(X)

rank.(X) =

<p

B*

rank.(X) < p

p cols

= min{||X — Y|z, rank(Y) = p}

smallest p where 0,411 (X) < €| X]||2

B*
X |F|4
p cols
rank(C') = 100
100 e ' '
rank.(C') =9
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MATRIGES WITH DISPLAGEMENT STRUGTURE

A matrix X € C™*" is said to have (A, B) displacement structure if

AX —~XB=F,

where A € C*™ B e C""™, and F € C™mx",

Related formulations:

Block linear equations

AX =F — AmlzflanZZfZV"?Aajn:fn

Sums of Kronecker products

AX - XB=F — Ax=f{, A=1, A—B*® I,



MATRIGES WITH DISPLAGEMENT STRUGTURE

A matrix X € C™*" is said to have (A, B) displacement structure if

AX —~XB=F,

where A € C*™ B e C""™, and F € C™mx",

Sylvester matrix equations appear in:

stability analysis for dynamical systems e discretizations of PDEs e signal pro-
cessing and time series analysis e eigenvalue assignment problems e iterative
solvers for continuous algebraic Ricattti matrix equation e analyses/computations
involving special structured matrices (e.g., Toeplitz, Cauchy, Vandermonde)

[ (Simoncini, 2016) |



MATRIGES WITH DISPLAGEMENT STRUGTURE

A matrix X € C™*" is said to have (A, B) displacement structure if

AX — XB=PF,
where A € C*™ B e C""™, and F € C™mx",

Sylvester matrix equations appear in:

stability analysis for dynamical systems e discretizations of PDESs e signal pro-
cessing and time series analysis e eigenvalue assignment problems e iterative
solvers for continuous algebraic Ricattti matrix equation e analyses/computations
involving special structured matrices (e.g., Toeplitz, Cauchy, Vandermonde)

In practical settings:

e A and B are sparse, banded, or structured, so that fast shifted inverts/matrix-vector
products are available.

e [ is often a low rank matrix (rank 1 or 2).

e X is dense.

[ (Simoncini, 2016) ]



THELOW RANK PROPERTY

AX —XB=F

When the spectra of A and B are well-separated and F' is low rank,

X is well-approximated by low rank matrices.

. Why is this true?
. When is this true?

e Only in the above circumstances or in greater generality?

e Can we be precise about how the low rank properties of X depend on A, B, and F?

3. How can we take advantage of it?

[ (Beckermann & Townsend, 2017), (Sabino, 2008 ), (Penzl, 1999), (Benner, Truhar & Li, 2009), (Li & White, 2002),
(Druskin, Knizhnerman & Simoninci, 2011), (Peaceman & Rachford, 1955), (Lu & Wachspress, 1991),

(Townsend & W., 2018) ]



AREGIPE FOR LOW RANK APPROXIMATIONS

A(ZDY*)=(ZDY*)B =USV* (S of size p x p)

(factored) ADI
f A 1 o 1
Z0 = [ 50 | 50 || 509 ], ]2 =(A-pD)US |
|20 = (A= a;D)(A = Bipa )~ 20
(v (1) _ (p+* —1
YR = [y |y@ | ... | v®) ], <¥(,)_(B —al)V |
YUY = (B* — B,I)(B* — aj 1) 'YW

D™ = diag (81 — 1)y, -+, (B — )1 ,)

x k) — 7(k) pE)y(K)”

After k iterations:

o X®) — Zzw~, rank(X™)) <kp, p=rank(F) ~|Z

W*

o X — XW) =rp (A)Xri(B)™, 7(2)

[ (Beckermann & Townsend, 2017), (Sabino, 2008), (Penzl, 1999), (Benner, Truhar & Li, 2009), (Li & White, 2002), (Druskin,
Knizhnerman & Simoncini, 2011), (Peaceman & Rachford, 1955), (Lu & Wachspress, 1991), (Townsend & W., 2018) ]




AREGIPE FOR BOUNDING SINGULAR VALUES

After k iterations:

o X5 — Zziw* rank(X®) < kp, p=rank(F)

o X — XW =r (A)Xri(B)™, r(2)

[ (Beckermann & Townsend, 2017), (Sabino, 2008 ), (Penzl, 1999), (Benner, Truhar & Li, 2009), (Li & White, 2002), (Druskin,
Knizhnerman & Simoninci, 2011), (Peaceman & Rachford, 1955), (Lu & Wachspress, 1991), (Townsend & W., 2018) ]



o Explicit bounds on the singular values of X

AREGIPE FOR BOUNDING SINGULAR VALUES

* A cheap method for constructing low rank approximations X (¥) = ZW* ~ X

Explains low rank properties in real-valued Vandermonde, Pick, Cauchy, Loewner
matrices and more...

A. Townsend

B. Beckermann
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EXPANDING ADI-BASED METHODS

To bound singular values of X via tADI, we need...

1. rank(F') is small.

2. The spectra of A and B are well-separated.

3. A solution to Zolotarev’s problem is known for sets F, G, where A\(A) C E and A\(B) C G.

Problem: Many practical applications do not satisfy these constraints!



EXPANDING ADI-BASED METHODS

F' has decaying singular values.

Townsend, W., (2018):
ADI with high-rank right-hand sides.

e low rank solver for AX — XB = F', F is full rank.

e bounds on numerical ranks of matrices,
e.g., multidimensional Vandermonde

P TSV T SN S R A o | N T e

Subsets of the spectra of A and B are well-separated.

Beckermann, Kressner, W., (2021)

superfast solvers for Toeplitz system 1T'x = b.

ADI-based hierarchical compression.

e extends to other related linear systems (e.g., NUDFT, Toeplitz+Hankel)

e explicit approx. error bounds 4+ competitive with state-of-the-art.

[Kressner, Massei and Robol (2019), Martinsson, Rokhlin, and Tygert (2005), Chandrasekaran, Gu, Xia, and Zhu (2007),
Xia, Xi, and Gu (2012) ]



EXPANDING ADI-BASED METHODS

3. A=selution-to Zolotarev’s problem is known for sets F, G, where A(A) C E and A\(B) C G.
An approximate solution

Zolotarev’s third problem: Solution is known for:

SUP. g ’T(Z)‘ e Intervals of the real line

2 (Ea G) — rlergk inf,cq ‘T(Z)‘ e Disks in the complex plane

For more general sets in C...

()

10g1o( | 79(2) |) _

Im(z)

—1 L
~1.5 Re(z) 1.5
[(Zolotarev, 1877), (Sabino, 2008 ), (Beckermann & Townsend, 2017, 2019), (Starke, 1992) (Ganelius, 1976, 1979)]




[OLOTAREV'S 3RD PROBLEM IN THE GOMPLEX PLANE

Im

h = exp(1/cap(F, G))

P: 00— A={2€C,1<|z|<h}
Suppose that ® is a type (1, 1) rational function...

®* is a type (k, k) rational function.

— Bk,

up,cp () _ 1
inf,cqg ®k(z) — hF

— Zk(E,G) = hF

h™" < Zi(E,G) <

[(Rubin, Townsend, W., 2021) (Starke, 1992) (Ganelius, 1976, 1979) (Goncar, 1969)]



THE FABER RATIONAL FUNGTIONS

m 5t
o4 Ne

»:Q > A={2€C,1<|z| <h)

When ® isn’t a rational function, the story gets more complicated...

o Apply a special “filtering” process to ®*(z),

e Results in a type (k, k) rational 7(z) (Faber rational),

SUp.cp |7k (2)]
infze(; |fk(z)|

e Bound from above.

[(Rubin, Townsend, W., 2021) (Ganelius, 1976, 1979)] (T. Ganelius) (G. Faber)



[OLOTAREV'S 3RD PROBLEM IN THE GOMPLEX PLANE

Theorem (Rubin, Townsend, W., 2021) If E, G are disjoint, bounded open con-
vex sets in C, then there is kg where for k > ko,

Zi(E,G) < 16h=% + O(h=2F).

*We have an inelegant explicit upper bound and expression for k.

Im

Re

~|Zk(Eo, —Eq )|

[(Rubin, Townsend, W., 2021) (Ganelius, 1976, 1979)]



[OLOTAREV'S 3RD PROBLEM IN THE COMPLEX PLANE

Disjoint sets E and G

Bound

Reference

finite intervals of R

disks in C

arcs on a circle C
more general sets in C

Zw(E,G) < 4h~F
Zk(E7 G) < h_k
Ze(E,G) < 4h~*

Beckermann, Townsend (2017)

Starke (1992)
Beckermann, Kressner, W. (2021)

Zu(E,G) < 16h™F + O(h™2F)

e Bounds on singular values for families of matrices.

e Bounds for rational approximation to sign(z) on E, G.

e New ideas for computing ADI shift parameters.

Many modern tools available to compute ® (and h)

GONFORMAL MAPS
+ NUMERICS -

Lightning Laplace solver (Trefethen, Gopal, Baddoo)

Integral formulations (Gaier, Schiffer, Nasser)

Schwarz-Christoffel methods (Delillo, Elcrat, Driscoll, Crowdy, many more...)

HEI‘HISTIGS To compute/evaluate 1

Construct a complex-valued barycentric rational interpolant to samples (®(z), z).

[(Rubin, Townsend, W., 2021) (Trefethen, 2020) (Nakatsukasa, Trefethen, & Sete, 2018)]



ZOLOTAREV'S 4TH PROBLEM AND THE MATRIX/
OPERATOR-VALUED SQUARE ROOT FUNGTION

Consider a matrix A € R"*™ and let A\(A) C [a, 1].
Compute v/ A.

Let 7 be the best type (2k + 1,2k) approx. to sgn(z), z € [—1, —a?] U [a?, 1].

2 Zpk(zz)
2l an(2?)

relative error when k = 3
><1O'6

Eopi1.0k i = |sgn(z) — 72l~c(Z)| =

Letting = = 22,

\/5 B :ijk (x)

VL z o]

Eopt1.0k =

Gives the best type (k + 1, k) relative

rational approximation to \/x on |, 1].



ZOLOTAREV'S 4TH PROBLEM AND THE MATRIX/
OPERATOR-VALUED SQUARE ROOT FUNGTION

What about v/£, where £ is a differential operator?




THE SPECTRAL FRAGTIONAL LAPLAGE OPERATOR

Let  be a bounded, simply connected, open subset of R.

0* 0°
Au = — R
! (8:13% (9:13?[)

For 0 < a < 2, we define £, : H5(Q) — L?(Q) as follows:

0o
2
Lou = Z)\?/ < €;,U > €5,

g=1

where Ae; = \je;, and 63"89 = 0.

When o # 2, L, is a nonlocal operator arising from physical problems involving
anomalous diffusion:

“Diffusion of particles with spattering”
-C. Pozrikidis (The Fractional Laplacian)

[(Karnidakas), (Pozrikidis) (Shen and Wang)]



THESPEGTRAL FRAGTIONAL LAPLAGE 0PEHATUH
SPECTRAL FRACTIONAL POISSON EQUATION

Lou=f, €]
u(x) =0, x € 0N

/Lau:Z)\?/Q <eju>e, — L;lf:Z)\j_a/Q <ejf>e;

j=1 =1

Naive method: Discretize A, represent with a matrix L. Find the
eigendecomposition of L.

ex(z) = V2sin(krr) A\ = (1k)? < 1, e, >= —\/_

» For a = 1, k ~ (4/€)? to achieve error tolerance e.

[(Karnidakas), (Pozrikidis) (Shen and Wang)]



RATIONAL FUNGTIONS AND FAST DIREGT SOLVERS Tll THE HESGUE
SPEGTRAL FRAGTIONAL POISSON EQUATION

Lou=f, €]
u(x) =0, x € 0N

Let ri(x) = le | 525 TR(T) R r=%/2 for x € [1, 00).

Now L1 f ~re(A)f = X ve(A —pel) 7L f.

For each £, solve

Aug — poug = Yo f, T €S
ug(xr) =0, x € .

k
Then u = E Uy .
(=1

A1/2 =1, via UltraSEM

[(Bonito & Pasciak, 2015), (Aceto & Novati, 2017), (Martinsson, 2019) (Fortunato, Hale & Townsend, 2020) |



GONSTRUGTING RATIONAL FUNGTIONS

Transform to a finite interval:
me(y) = y*/?, yel0,1].
Let ri(x) = 71 (1/y).

H. Stahl: For a =2/n, n € Z7, e~ (MVE < Iél[%l’i] ri(z) — 22| < e~ c2(MVE

How to build such a rational function?
e sampling methods/least-squares fitting:
Error blows up in locations off sampling grid as * — 0.

e Analytical construction (e.g., contour integration) on interval [m, 1|, where
m is small and r; “behaves well” on [0, m)].



RATIONALS VIA GONTOUR INTEGRATION

RESOLVENTMETHODS ) = o | = 's)e — o702, we

Apply a quadrature rule consisting of k£ weight-node pairs, {(w;, 2;) ;“?:1:
k
X — —1
) ~ — where, v; = w;z. " f(z;)dz;.
f() 27.‘.2. x_pj’ » 1] J77 (J) J
g=1
Choose the contour and quadrature points cleverly via conformal mapping.
0.35 , = , - 32007
03+
0
0.25
0.2+ =4
0.15:
=2t
0.1
3}
0.05
0 . z x - -4 x . - -
0 0.1 0.2 0.3 0.4 0.5 0.5 0.6 0.7 0.8 0.9 1

[(Hale, Higham & Trefethen, 2007)]



THE SQUARE ROOT GASE

10°

V Each r is bounded and small on [0, m].

For fixed k, we optimize the choice of m:

Unbalanced Approximants converge to /x like e~k

10-10 L

0.2 0.4 0.6 0.8 1

[(Gawlik and Nakatsukasa, 2019)]



EXTENSIUNS VIASPEGIALIZED GUNTUUH INTEGRALS

N. ngham N. Trefethen N. Hale

)~ tdw

Map conformally to a rectangle R:
1/2

v=m'"?u(tlg), ¢=m

Apply trapezoidal quadrature rule.

The resulting rational approximation is the best relative approximation to /x
on [m, 1]!

» A blueprint for approximations to /™ on 0,1].

[(Hale, Higham & Trefethen, 2007)]



EXTENSIONS VIA SPEGIALIZED GONTOUR INTEGRALS

nx

7

fo) = 5o [ " =) e

v

e poles along (—oo, 0] in 2z plane

Map conformally to a rectangle R:

Apply trapezoidal quadrature rule. e formulation via elliptic functions

[(Hale, Higham & Trefethen, 2007) ]



SUMMARY

We can explain and exploit low rank properties in several computational

applications by...

Expanding our understanding of the Zolotarev rational functions

Revisiting and expanding upon our understanding of classical tools like contour

integration and conformal mapping

Developing new computational methods for constructing rational
approximations to functions

Code, papers, slides, and more:
heatherw3521.github.io



http://heatherw3521.github.io

