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oday’s focus: the nonuniform discrete Fourier transform

Solve Vo = b, where V' is a Vandermonde matrix, with
{v1,...,vm} on the unit circle.
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Related highly structured matrix families

Toeplitz, Hankel, Toeplitz+Hankel

Numerical PDEs
Covariance matrices in signal processing
Time series and dynamical systems

Function approximation

Cauchy-like, Loewner, Pick

Semi-separable function representation
Matrix equations
Dynamical systems

Rational approximation methods
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What do all these matrices have in common?

1. They share a very special kind of displacement
structure, enabling a sparse representation.

2. They are all just a fast transform away from
hierarchical low rank structure.



Fast and superfast solvers

Example: Solve n X n linear system in as few operations as possible.

Fast Levinson Algorithm [Levinson (1947) Durbin (1962)]

2
O(n®)  Schur Algorithm [Lev-Ari (1983), Kailath and Sayed (1991)]
Displacement-based GE [Heinig (1995), Gohberg, Kailath and Olshevsky(1995)]




Fast and superfast solvers

—

Example: Solve n X n linear system in as few operations as possible.

The square Toeplitz case

Heinig (1998)

D q Chandrasekaran, Gu, Xia, Zhu (2007)
O(Tl lOg (Tl) lOg (1/6)) Martinsson, Rokhlin, Tygert (2005)
Xia, Xi, Gu (2007)

Superfast

Overdetermined Toeplitz system

Xi, Xia, Cauley, Balakrishnan (2014)

Can we adapt these ideas to Vandermonde systems, and beyond?




Templates for a supertast solvers

—

Example: Solve n x n linear system in as few operations as possible.

Template for superfast solver for Ax = b:

1) Apply fast transform: A — A b—b
2) Compress rank-structured matrix: A ~ H
3) Solve: HZ = b

)

4) Transform solution: £ — x

Displacement structure
+

Zolotarev rationals for low rank approximation




/olotarev rationals and low rank approximation

_—

The inverse nonuniform discrete Fourier transform

_—



/olotarev’s rational approximation problems

/olotarev’s third problem:

Rational analogue to Chebyshev polynomial
approximation problem

/olotarev’s fourth problem:
Rational analogue to polynomial filtering

Rational approximation to sign function

Y. Zolotarev
(1847-1878) on disjoint intervals, square root function

on [B, 1].

[Acheiser (1901), Todd (1984), Goncar (1969), Istace &Thiran (1995)]



/olotarev’s rational approximation problems

¢ |terative solvers for matrix equations

+Low rank approximation and bounds on the decay of
singular values of certain matrices

¢ Eigensolvers, polar decompositions, the SVD

¢ [ensor compression

+ Nonlinear approximation schemes (e.g., via rationals
or exponential sums)

Y. Zolotarev
(1847-1878) * Spectral methods and PDE solvers

+ Digital and analog filter design

[See Simoncini (2016) , Beckermann & Townsend (2019), Nakatsukasa & Freund (2016) for overviews]



/olotarev’s third problem

——

Chebyshev’s problem
|

b

Find the polynomial p(x) of
degree < k such that:

+p(0) =1,

» maX,cq |p(x)| is minimized.

/olotarev’s problem

G
Find a rational r(z) of type (k, k)
such that:

i > 1
e min r(z)| = 1,

E

s maX,cp |7(x)| is minimized.




/olotarev’s third problem

——

Chebyshev’s problem
|

b

Find the polynomial p(x) of
degree < k such that:

+p(0) =1,

» maX,cq |p(x)| is minimized.

/olotarev’s problem

G
Find a rational r(z) of type (k, k)

such that:
maX,cp |7(x)]

min,cq |r(x)]
1S minimized.

E




Zolotarev’s third problem

——

Find a rational r(x) of type (k, k) such that the following is attained:

Z0(B,G) i= min 2eenlr(2)
" rerr mingeg |r(2)]

Zx(E,G) is the kth Zolotarev number associated with £ U G.




Known results: Disks and Intervals

e When FE, G are intervals on R, (z) is known exactly and can be expressed
in terms of its poles and zeros, which are computed via elliptic integrals

(Zolotarev, 1877).

e When FE, G are disks in C, r(z) is known exactly and can be expressed in

terms of a repeated pole and zero (Starke, 1992).

e /;(F,G) is invariant under Md&bius transformations.

"o (Cap(fl'i G))

Townsend & Beckermann (2016)

Disjoint sets £/ and G Bound Reference
finite intervals of R Zy(E,G) < 4h™F
disks in C Zk(E,G) < h=F Starke (1992)
arcs on a circle C Zy(E,G) < 4h™F Useful for NUDFT

(W., Epperly, Barnett, 2024)




Known results: More general sets

Theorem (Rubin, Townsend, W., 2021) If F, G are disjoint, bounded open con-
vex sets in C, then there is ky where for £ > kg,

Zy(E,G) < 16h=F + O(h=2F).

*We have an inelegant explicit upper bound and expression for k.

Im

10~4

Re

1078

10712

[ (Goncar, 1969), (Ganelius, 1977, 1979), (Rubin, Townsend, & W., 2022) ]



Computing Zolotarev rationals

o, = 1.2198e-06 o, = 0.00037654

o = 3.024e-11

Key ideas:

e Use equivalency with best sign function approximation

e New developments in AAA rational approximation algorithm for accurate
approximations to sgn(z) (Trefethen, W., 2024).

[ (Trefethen & W., 2024), (Nakatsukasa, Sete & Trefethen, 2018)]



The low rank connection:

Displacement, Zolotarev, and singular value decay



Matrices with displacement structure

——

AeCm=m BeCr*" X, Fe(Cmxn,
AX — XB=F
“X has (A, B) displacement structure”

Appears with X as an unknown: discretization of PDEs, reduced order
modeling, signal processing (see Simoncini SIAM REV, 2016 + ref. therein).

Special (A, B, F) triplets characterize properties of X for structured
matrices: e.g., X = Toeplitz, Hankel, Cauchy, Vandermonde, and more.

[(Beckermann & Townsend, 2019), (Kailath & Sayed, 1995) (Heinig, 1995)]



Example: Vandermonde matrix

(71

Y2

DV —VQ =uv”

(v)? ()t e ()™
/(72)0 ()t - (72)”1\

/(71)0 ()t -
(12)° ()t -




The low rank connection

AceCm*™m B e Cn*™
AX — XB=F

, X, FeCmn*n

X 18 well-approximated by a low rank matrix when

(1) AM(A) and \(B) are “well-separated”
(2) F is low rank

Example where A\(A) N A(B) =0

[ (Beckermann & Townsend, 2019), (Sabino, 2008 ), (Penzl, 1999), (Benner, Truhar & Li, 2009), (Li & White, 2002),
(Druskin, Knizhnerman & Simoncini, 2011), (Peaceman & Rachford, 1955), (Lu & Wachspress, 1991), (Townsend & W.,,

2018), (Rubin, Townsend, & W., 2022) ]




The factored AD|I method
AX —XB=F
Factored ADI: A(ZDY*)—(ZDY*)B =USV* U,V have p columns.

(7 = (A - B I)"US,
20t = (A — auI)(A = Biya D)2

ZW =[ 20|20 | ... | 20 ], |

YO = (B* =y 1)LV,

Y(k) b < D .
| YD = (B* — B, 1)(B* — i1 I)~'Y

y® =[ yO | 7@ | ...

DW= diag (81 — 1)1, -+, (Bk — ar) 1)
x k) — 7)) pk)y (k)" -
After k iterations: x (%) — AQIU 4O
—~~— kp columns

[(Li & White, 2002), (Benner, Li & Truhar, 2009)]




~ Bounding the ADI error

k
X = X0 = r()Xr(B) 7, () =]

< — Oy
=1 2 T P

|1 X = XPlz < [lr(ADre(B) Mzl XNz < llreA(ADl2llre(AB)) ™ 21X 12

||X _ X(k) H2 < max,cpg ’T(Z)‘ HXH2 Example where A\(A) N A(B) =0
T mineq |1(2)] .

|

Tort1 < |1 X — XWy < Zi(E,G)||1 X ||2

[ (Beckermann & Townsend, 2017), (Sabino, 2008 ), (Penzl, 1999), (Benner, Truhar & Li, 2009), (Li & White, 2002),
(Druskin, Knizhnerman & Simoncini, 2011), (Peaceman & Rachford, 1955), (Lu & Wachspress, 1991), (Townsend &
W., 2018), (Rubin, Townsend, & W., 2022) ]



Bounding the Zolotarev numbers

AX — XB=F

Theorem (informal):

If rank(F') < p, and A(A), \(B) are each arcs on the unit circle
disjoint from one-another, then there are Z, W, each with pk
columns such that

2 )"Lk/PJ

2log 16~y

|ZW* = X]|a/|1X |2 < 4exp ( 372

Y

where v is the cross-product of the arcs.

Key ldea: Use fADI to construct ZW* ~ X

[(W., 2021), (W., Epperly, & Barnett, 2024)]



The inverse nonuniform discrete Fourier transform




Inverse nonuniform discrete Fourier transforms

n—1
_ —2mip;i(k—1 :
bj—che p; ( )7 0§j§m—1, ij[O,l]
k=0 >
‘ Goal: Recover coefficients cq, ..., cp_1- ‘ 15}
1 i Q
0.5¢
0 -4 U —————————————————————————
-0.5 : : n 1
0 0.2 0.4 0.6 0.8

[Forward problem: (Barnett, see FINUFFT package), (Potts, Kunis, see NFFT package) (Greengard and Inati, 2006 ), (Townsend and Ruiz, 2017),
Other direct inversion solvers: (Kircheis and Potts, 2019 ), (Dutt and Rokhlin, 1993)]



Inverse nonuniform discrete Fourier transforms
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Inverse nonuniform discrete Fourier transforms

n—1
bj =Y cpe i 0 < j<m—1, p;€[0,1] Y
k=0 Im /
ST
‘ Goal: Recover coefficients cg, ..., c,_1. ‘ Vs AN
Set Vi = 5 2T, /
(1)° ()t e T e b [ \
(72)° ()t o ()" : . — Re
5 o o 0 : B \ /
c \ /
1) ()t e () b, N
[(Ym)” (Ym) (V)" N | S

Solve a (overdetermined) linear system Ve =b



Inverse nonuniform discrete Fourier transforms

‘ Goal: Solve a linear system Ve = b ‘ gt

Im

When ~1,...,7, are equally spaced il N /
on the unit circle and m = n... / \

/ \

( \ Re

\ /

AN /
NN ~




Inverse nonuniform discrete Fourier transforms

‘ Goal: Solve a linear system Ve =10 ‘

When ~4, ..., v, are equally spaced ~
on the unit circle and m = n... /
V= i=V* c=V*b /

Compute in O(nlogn) flops via FFT




Inverse nonuniform discrete Fourier transforms

Goal: Solve a linear system Ve =10 ‘

When ~4, ..., v, are equally spaced e \
on the unit circle and m = n... /

V-1l =V* c=V*b ] \
Compute in O(nlogn) flops via FFT ./ | Re

Small perturbation, structure breaks!

Solution: Find a new structure —_l




Inverse nonuniform discrete Fourier transforms

V*V is Toeplitz v,
Iterative approach:
(1) Form V*Ve = V*b. S~
(2) Apply iterative method with fast matrix-vector multiply /

—

Problem: /

Depends on s(V*V) = [|[V*V |2 [[(V*V) L5 ! \

Solution: Fast direct solvers

Solve cost does not depend on (V') N e

Also good for multiple right-hand sides!




Inverse nonuniform discrete Fourier transforms

When the problem compels it, use a direct solver!

Our wishlist

(1) (Super)fast!

(2) Do not square condition number
(3)

(4)

Can handle overdetermined case
“Black box”

x = inufft(samplelocs, n, rhs, acc)

[ Related ideas: (Greengard and Inati, 2006 ), (Kircheis and Potts, 2019 ),(Dutt and Rokhlin, 1993), (Heinig, 1995)]



The tfast Cauchy-like transtormation family

—

AX — XB = F, with F' low rank
_|_

A, B are diagonal or “very easily diagonalizable”.



The Cauchy-like transformation

V- C=VF*

DV —V(Q = uw”

D(VF*) — (VF)FQF*" = uw™F”

If Ve C™*™, only 1 length-n FFT
to (implicitly represent C.




The Cauchy-like transformation

C' has hierarchical low rank structure (C is an HSS matrix)

]
”:: I -’1:1,4 [

D,

.|"1 A5 _! -Jﬁ




The Cauchy-like transformation

C' has heirarchical low rank structure (C is an HSS matrix)




Low rank submatrices




Low rank submatrices

_W 1

For the submatrix C’ of C

Y2

Y2

3

DC — CA = u(Fv)*
_ - 2
w4
A= 5
— | 2n ,
Ym | L W 3 A .
/ X D %\< 71
_ / x |
¢ ¢ , = [u(Fv)*]; 1 /A




ADI-based hierarchical compression

DJC/ — C/AL — [U(FU)*]JL

|C" = ZW*l2 < €| C7)l2.

Z, W have k = O(lognlog1/e) columns.

We construct Z, W via one-sided ADI-based interpolative decomposition.

70 = (A-pI)"US,

Zz® = [z | z@ | ... | z®& T 7 |
| ‘ ’ | \Z“H) = (A— o D)(A— Bia D)~ 2
A A X (v(1) _ (p* _ —1
YO+D = (B* — BiI)(B* — g1 ) 'Y )

D™ = diag ((B1 — 1)y, -, (Br — o)1)

x (k) — 7(k) plk)y (k)"




ADI-based hierarchical compression
DJC/ — C/AL — [U(FU)*]JL

|C7 = ZW* |2 < €l|C7]2,
Z, W have k = O(lognlog1/e) columns.

We construct Z, W via one-sided ADI-based interpolative decomposition.

Total cost for low rank compression: O((n + m)log® nlog®(1/e))




ADI-based hierarchical solver

Algorithm 1 A superfast least squares solver for Ve = b. (Type-II NUDFT
inversion) (Transforms to C'y = b, solves, transforms back)

1: Compute w = Fv.

2: Use ADI on DC' — CA = uw™ to generate H, an approximate hierarchical
factorization of C.

3: Solve Hy = b in the least squares sense

4: Compute c = F™y.

o O((m+n)log®(n)log®(1/e€)) flops, where € is an accuracy parameter.

® (Construction of H is automatic.
e Toeplitz version for normal equations.

e Eispecially effective for multiple RHSs

[A least-squares Toeplitz solver: (Xi, Xia, Cauley, Balakrishnan, 2014) ]



‘When do iterative solvers work well?

1. Jittered grid (almost equispaced) 2. Clenshaw-Curtis quadrature nodes
3. Random iid from uniform distribution 4. Random + gaps

oS



When iterative methods work well

10% ' . Normal equations (V*Va = V*b)
- | CG nor
| (BB PCG nor strang . CQ
- [CJFP adj-sinc
o | | CG adj
10° f | mEmPCG adj sinc . CG w/Strang precond.

L e e e e m - - - - Adjoint normal equations (VV*y = b)
ADI-based direct (= 22s)

1L
107 Greengard-Inati fixed point

B cc

. CG with sinc-quad. precond.

Seconds

10°

ol

107"

Grid m = 524,288 and n = m/2



When a direct solver is needed

Seconds

10°

10°

107§

10° ¢

- | CG nor
| BB PCG nor strang
- [CJFP adj-sinc
B CG ad

- I PCG adj sinc

Normal equations (V*Vx = V*b)

B cc

. CG w/Strang precond.

Adjoint normal equations (VV*y = b)

Greengard-Inati fixed point

B cc

. CG with sinc-quad. precond.

m = 524,288 and n = m/2



When a direct solver is needed

Normal equations (V*Vx = V*b)

107
B cc
& i . CG w/Strang precond.
= 10*
é Adjoint normal equations (VV*y = b)
o ] Greengard-Inati fixed point
-% 10
< M cc
o
g - 1 . CG with sinc-quad. precond.
10
— — ADI-based direct




Systems with many right-hand sides

Single RHS, variable problem size fixed problem size 16384 x 8192

10*F

107

Seconds

T
n, where V is [(1.8)n] xn # of RHSs

[ (Kircheis and Potts, 2019)]



Solution properties

1.5

05F

-0.5

-1.5

s

N

+ data
- - - - true signal
CGnor
CGad;j

—— ADI-based LS solver

1D signal reconstructed using samples from Grid 3

-0.5 7
0.468

0.475

0.482



Ongoing work

The 2D NUDFT
Vop = Ve x V,, x = the “face-splitting” product.

Requires working with block-structured matrices

Blocks of Cauchy-like matrices, linked compression properties across blocks.
— one large HSS matrix.

Several related block-structured matrices in other applications
(e.g., block—Toeplitz with Toeplitz blocks)

Noise and related i1ssues

Basic Tikhonov regularization is straightforward.
Various constrained optimization problems with rank-structured matrices?

Designing preconditioners, fast matvecs, etc.



Ongoing work

/olotarev rationals on general sets via interpolation
(with L.N. Trefethen)

Inverse-free iterative solvers for Sylvester matrix equations
via Akheizer polynomials (with T. Trogdon and C. Ballew)



Resources and software

Paper on NUDFT inversion: https://arxiv.org/abs/2404.13223

Code for solver: https://github.com/heatherw3521/NUDFT

Paper on computing Zolotarev rationals: https://arxiv.org/abs/2408.14092

heatherw3521.github.io


https://github.com/heatherw3521/nudft
https://arxiv.org/abs/2404.13223
https://arxiv.org/abs/2408.14092

Begin Extra Slides




Constructing low rank approximations

D;C"—C'Ar = [u(Fv)*]sL C’

2

« [
|20 — C'|ly < 467H|Co. zw = §

The factored ADI method: An ADI-based interpolative decomposition:

C' =~ Z/C(Ip, I)
I

If C' is p x ¢, we can construct:

Z in O(pk) operations >

W in O(gk) operations Only requires O(pk?) operations

[Factored ADI: (Benner, Li, Truhar, 2009), Interpolative decomposition: (Cheng, Gimbutas, Martinsson, Rokhlin, 2005)]



The ADI method
One ADI iteration:
1. Solve (A — B, 11 1) XUTY2 = XU)(B — B;,1I) + F for XUT1/2),

2. Solve XUtD(B — aj1I) = (A — a; 1) XUTY2) — F for XU+,

e Developed as a method for solving the heat equation by applying a split-
‘ ting scheme to Crank-Nicholson.

e Running ADI on the heat equation at steady state leads to an ADI-based

Poisson solver.
e Systems and control theory groups + numerical linear algebra groups gen-

eralized and applied the Poisson solver to develop low rank solvers for
Lyapunov and Sylvester matrix equations.

e Studied by optimization community as a special instance of the alternating
direction method of multipliers (ADMM).

[ (Peaceman & Rachford, 1955), (Lebedev, 1977), (Lions & Mercier, 1979), (Lu & Wachspress, 1991)]



Low rank structures

rank(Y) < p ranke(X) < p
B* B*
Y = A X ~| A
p cols 0 cols

rank(C') = 100

10 e

rank.(C) = 9 0,41(X) = min{|| X — Y||2, rank(Y) = p}
7 °. / | rank. (X ) = smallest p where 0,11(X) < e[| X]||2

1™

1071°F . 1
: : ®ese0e0
0 5 10 15 20
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