| - . || il i
Signals with singularities Can you spot the knots?
” - i Our methods are data-driven. They require no knowledge from the user about the number, locations,

or types of singularities present. In fact, they can be used to identify and classify such features! In this
example, we fit a rational approximation r to samples from a cubic spline (left). The locations of the
knots in the spline are revealed by the clusters of poles of r (right, shown in the z-plane, r(z) = r(e=2"*).)

Reconstructing signals from noisy, incomplete or corrupted samples is challeng-
ing enough, but in many applications (e.g., [6, 8, 9, 10, 13]) an added complica-
tion arises. The underlying signal contains impulses, shocks, or sharp features
that can cause traditional Fourier-based methods to underperform or fail.

We introduce a suite of tools for reconstructing and computing with such signals e

via data-driven rational approximation methods. Our computing framework 06
combines two complementary representations:(1) barycentric trigono-
metric rational functions, and (2) their Fourier transforms, which are
short sums of complex exponentials. Efficiently toggling between these 0.2
representations lets us overcome computational and data-related challenges.

0.4 -

Why ratlonaIS? Rational functions are effective at representing signals in regions around 02|
a0 _ | | | singularities, whereas polynomial (e.g., Fourier methods) are hopeless. 1al o | | |
i Automated, reliable tools for signal processing with rationals can help us o 0.2 0.4 0.6 0.8 1

| make progress in applications involving these challenging regimes.

degree 200 polynomial

Left: A type (43, 44) trigonometric rational function r(x) approximating a cubic
spline on [0,1). The knots of the spline occur at the dotted lines. Right: Poles

of r(z), z = e?™® with magnitude < 1 are plotted in the unit disk. They cluster

polynomial (purple) and rational (black) approximations toward points e*™*®, where each z; is the location of a knot.
to a function with jump discontinuities. Polynomial errors

1074 ll i |
* can decay at most at an algebraic rate with respect to the
distance from the singularity. In contrast, error for a
| | rational approximation can decay exponentially fast [19].

102
Left: Errors are plotted on a logarithmic scale for

error

type (59,60)
rational

108

0 0.2 0.4 0.6 0.8 1

i}
— Our par adigm includes routines that build approximations directly from samples in either Space, as

Let f : [0,1) — R be a continuous periodic function of bounded variation, well as specialized Fourier and inverse Fourier transforms that construct exponential sums in
with zero mean value over [0,1). We observe (possibly noisy) samples of f at Fourier space directly from barycentric interpolants, and vice-versa.

locations {z j}?f{]: and seek usetul representations of f in both the time and These transform functions are crucial because (1) they allow us to shift between the frequency and
frequency domains. By useful, we mean that the representations are cheap time domains as needed for various downstream computations, and (2) they allow us to overcome
to store, stable to evaluate, and conducive to efficient algorithms for issues (e.g., noise, undersampling) that could cause one of the direct construction methods to fail.

addition, convolution, differentiation, etc... |

)) Exchanging exact recovery for stability

DlreCt COI‘IS'III'I.I Ctlon mEtHOdS Given the poles and residues of r, the parameters in R = F(r) can be expressed explicitly [4].
—_————————— Likewise, one can write down r in pole-residue form given R. However, exactly recovering the
the time domain: baryc

abriee intar - = poles and residues in settings where the poles are clustered near a singularity is an ill-conditioned
entric i“ rpolants | - problem [14]. As a result, these formulas are too unstable to use directly. Finding good

A trigonometric variant of the AAA algorithm [16] can be used to construct a

type (m—1,m) trigonometric rational in barycentric form [3,11]:

barycentric support (or interpolating) points adds yet another layer of complication to the
' computation of r = F~1(R) in barycentric form. The transforms we develop are lossy due to

regularization steps, but crucially, they are stable.

. 2331 Vi fi COt(ﬂ'(m — tj)) = B Fourier transform: Approximate poles and residues of r can be computed
r(z) = 22’”‘* cot(m(z —t;)) ’ 27j i =0. '. in only O(m?>) operations [16]. These are used to recover the parameters in
j=173 s J=1 the exponential sums R, along with a regularization step involving a small set
The trigonometric rational has m pairs of poles {n;,7,}, where Re(n;) € [0, 1). (usually O(m)) of Fourier coefficients.

It also satisfies the interpolation property: r(t;) = f; = f(¢;)-
Inverse Fourier transform: To construct r = F'(R) in barycentric form,

we compute a sample of r using R and the FFT. Approximate poles of r, known
from R, are used in a stability-based algorithm involving column-pivoted QR
to choose good interpolating points. Then, a linearized least-squares fit to the
samples finds the barycentric weights. The cost is O(N log N + Nm?), where
N is the number of samples and is related to the approximate bandlimit of r.

i - = | e g
L =10 rEi e ol f L
f, T 1 y e
l . -y v / ¥ - i -
i] , et b
d i " =
: ' . =
{ - 1 i
)i * - -
{ i et S i - - L -,
il .
h

Advantages: impute missing data, high resolution in time domain, stable eval-
uation [1, 12], differentiation formula [2], rootfinding/locating extrema [16, 20].

The trigonometric rational r has a Fourier series that might decay very slowly!
However, its Fourier coefficients {7y }32.__ are given by the following [4,18]:

s (k) — Z;il W g%, k>0, In this example, we fit a rational function to noisy ECG data [8, 9] taken from the PhysioNet MIT BIH
. = R(k) := S @, e~ ik, L < 0. arrhythmia database [15]. Having the rational in barycentric form is convenient for identifying local extrema,
= but we cannot apply AAA directly, as it is sensitive to noise. Even without noise, the signal is undersampled
We only need to store the m pairs {(w;,a;)} to generate all the Fourier infor- (645 samples). Without an enriched sample, AAA will fail to produce a stable interpolant.

mation for r. Using a stable version of Prony’s method [4,17], we can directly
construct R =~ F(f) from Fourier samples of f.

To overcome these issues, we work in frequency space and construct a 35-term exponential sum R using

the regularized Prony’s method. This automatically denoises the signal. Then, we use our inverse
Advantages: robust to noise [20]1 ne&r_gptima] re.cgmpressign a]ggrithm [4:J 20]; Fourier transform to construct r = F = (R) Levera,ging the b&I'yCEEIltI'iC fOI‘IIl, we find local extrema.

algebraic operations (e.g., sums/products), convolution, filtering. Crucially, the signal is enriched via extrapolation in frequency space using the exponential sums.

10%;

3 [
—— extrapolated Fourier data | 12|
—— original Fourier data |

This can be viewed as a type of

superresolution [5]. Most of this |
process is automatic; the entire 102,
procedure runs with 3 lines of |
code in MATLAB.

Rationals and Exponentials "!'{}'4 L

1 |

0.8

0.6

E’?g% Software

0.4

02+

Our algorithms are implemented in an open source software package in MATLAB " |
called REfit. Inspired by Chebfun [7], the package uses two classes called rfun 10 - M M ff’y
and efun. Rfun objects store barycentric rational representations, and efun R = efun(data, ‘tol’, 1e-3); A i o4 |
objects store exponential sums in frequency space. r = ift(R); o ’ o0 o 1

: : , _ ¢ = Dminte) : e Left: The magnitudes of the Fourier modes from the sampled data are shown
These objects can be manipulated using dozens of overloaded commands, like extrema = [min(r); max(r)l]; in.orange on:s logarithmie sesle. Magnibudesot Tourier modes Tor-fhe S5tenm

the following: o . : : . by S
g N S basic arithmetic exponential sum approximant (R) are EhDjWIl in blue ﬁ@ght The original signal
_ o _ o _ (orange), along with the reconstructed rational approximant (r) (blue), andlocal
diff(.), cumsum(.) differentiation, indefinite integration extrema, (black dots).
conv(.), corr(.,.) convolution, cross-correlation
s o2 O PR & 3 o FPE Fourier and inverse Fourier transforms

Whenever possible, we automatically recompress representations with near-
optimal approximations after performing operations.

