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When are rationals useful?

When our toolbox is limited to the basic arithmetic operations (+, —, x, +),

the functions we can make are polynomials and rationals.
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Rationals appear in the fundamental things we do in numerical linear algebra.

Matrix function evaluation: (Gawlik, 2020), (Nakatsukasa and Gawlik, 2021),
(Braess and Hackbusch, 2005, 2009) (Ward, 1977) (Gosea and Guttel, 2020) and

many more...

Eigendecompositions/Polar decomposition: ( Nakatsukasa and Freund, 2015),
(Saad, El-Guide, and Miedlar), (Tang and Polizzi, 2014), (Gttel, 2010), (Ruhe, 1994

and many more...

Solving linear systems/matrix equations: (Ruhe, 1994),(Druskin and Simoncini,
2011), (Sabino, 2008), (Kressner, Massei, and Robol, 2019), (Benner, Truhar, and Li,
2009), (W. And Townsend, 2018) many more...

Solving PDEs: (Haut, Beylkin and Monzon 2015), (Trefethen and Tee, 2006 ),
(Gopal and Trefethen, 2019) , (Haut, Babb, Martinsson, and Wingate, 2016), (Chen,
Martinsson, W.) many more...

Quadrature, conformal mapping, analytic continuation, digital filter design,
reduced order modeling... (See Approximation Theory and Practice, Ch. 23)
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Rationals are useful for...

e recovering signals with slowly decaying spectral content.
(approximations to signals with sharp features, rapid transitions)

e representing functions sparsely in both frequency and time domains.
e filtering noise.

e imputing missing data.

e extrapolation.

e identifying/locating singularities.



Approximate f(x) = y/x on the interval x € |3, 1], 0 < S.

Find ri(z) to minimize max,cg 1) |7%(x) — f(2)]



The square root approximation problem gives us
insight into many problems that involve
computing with rational functions...

3 big ideas: many applications

* signal processing (event detection, filtering, denoising,
reconstruction)

* numerical linear algebra (NLEVP, functions of matrices,
low rank approximation, ...)

* solving of PDEs

* quadrature, resolvent methods

(There are many more ideas and applications we won't be talking about today!)



Approximate f(x) = y/x on the interval x € [3,1], 0 < S.

Find 71 (x) to minimize max e 1) |7%(7) — f(2)]

What is the main challenge?
And how can rationals help?

To see the issue, let’'s venture into the

complex plane...




A phase plot of the square root function
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A phase plot of the square root function
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A rational approximation to the square root
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A rational approximation to the square root
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Big idea 1: Cluster poles near singularities!

Let ri(x) be a rational function with k—1 zeros and k simple poles. Then,

r.
ri(z) = Z ’—, where {p; ?:1 are the poles of rg, and r; = res(rg, p;).

k
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Suppose we sample f at {x1,...,zn}.
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Big idea 1: Cluster poles near singularities!
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If we fix {p1,...,pr}, this is a linear least squares problem!



Big idea 1: Cluster poles near singularities!

1964

Root-exponential
convergence rates

D.J. Newman proves that there is a sequence of rationals {ry,7s2,...}, where 7,
has n poles and n zeros, that converges to |z| on [—1, 1] at the rate O(e~V").

Since |z| = V22, for x° € [0, 1], this argument also implies that such a sequence
exists for approximating /x on [0, 1].



Big idea 1: Cluster poles near singularities!
Gopal and Trefethen (2019): Lightning Laplace (Helmholtz, Biharmonic) solver.

dim(A) = 2927x751

(Fairweather & Karageorghis, 1998), ( Trefethen, 2020) (Trefethen, Nakatsukasa & Weideman,2021)



Big idea 1: Cluster poles near singularities!

Hierarchical least squares and minimum norm solvers. W., Epperly (2022)

Solves Hx = b in O(m + n)k, where H € C™*™ is a hierarchical
semi-separable with off-diagonal blocks of rank < k.

Future work: generalized H? solvers + specialized compression
strategies. — _

Many additional applications!

(Xi, Xia, Cauley, Balakrishnan, 2014), (Chandrasekaran, Gu, Pals, 2006) —




What happens if | don’t know where the
singularities are?

In many applications, we don't ”
know where the singularities are.

The goal might involve detecting
singularity locations/occurrences.

e

Reconstructed ECG signal in REfit
(W., Damle, Townsend, 2022)




Big idea 2: free-pole interpolation methods
ro(z) =28~ fz) =

for a collection of sample points X, minimize || f(X)g,(X) — pn(X)||2

One option: Barycentric rational interpolants

+
Greedy algorithm to pick interpolation points

Data-driven process

AAA, trigAAA, PronyAAA

(Antoulas & Anderson, 1986) (Nakatsukasa, Trefethen & Sete, 2018) (Baddoo, 2021), (Wilber, Damle &
Townsend, 2022 ) (Related ideas from: Gutenknecht, Beylkin & Monzon, Plonka, many more..)



Big idea 2: free-pole interpolation methods
ro(z) =28~ fz) =

for a collection of sample points X, minimize || f(X)g,(X) — pn(X)||2

Another option:
Prony’s method + Fourier inversion

Data-driven process in Fourier space

REfit, Beylkin & Monzon, Plonka

(Antoulas & Anderson, 1986) (Nakatsukasa, Trefethen & Sete, 2018) (Baddoo, 2021), (Wilber, Damle &
Townsend, 2022 ) (Related ideas from: Gutenknecht, Beylkin & Monzon, Plonka, many more..)



Big idea 2: free-pole interpolation methods
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Big idea 2: free-pole interpolation methods

Cubic Spline: Could you guess the knot locations?
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(Wilber, Damle & Townsend, 2022 ) (Beylkin & Monzon, 2009 )



Big idea 2: free-pole interpolation methods

Cubic Spline: Could you guess the knot locations?
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Big idea 2: free-pole interpolation methods

Data-driven rational approximations

Signal reconstruction: geophysics and seismology, biomedical monitoring,
extrapolation/superresolution, filtering

Feature extraction: abnormality detection, classification, parameter recovery

NLEVP, Reduced order modeling, dynamical systems

(Antoulas & Anderson, 1986) (Nakatsukasa, Trefethen & Sete, 2018) (Baddoo, 2021), (Wilber, Damle &
Townsend, 2022 ) (Related ideas from: Gutenknecht, Beylkin & Monzon, Plonka, many more..)



Big idea 2: free-pole interpolation methods

GOAL: Develop software tools for working adaptively with
trigonometric rational approximations to periodic functions.

® “Near-optimal” rational approximations

® Data-driven: no tuning parameters

® \Works with noisy, under-resolved, missing data.

® PBasictools: algebraic operations (sums, products),
differentiation, integration, filtering, rootfinding,
polefinding, visualization, etc.

Regularized — The AAA

Prony’s method algorithm

(Fourier space) e (time/spatial)




Computing with rational functions and exponential sums

- ft(rm,) -
Rm(k) — ije)\jk T:,’;y(x) _ Z?;;fy]fj cot (7'('(55 o t.?))
j=1 ift(Rm) Zj:l Vj cot (7‘(‘({1} o t]))
—

Problem : Fourier coefficients decay slowly, sample is underresolved...
How can I construct an exponential sum representation of r,, =~ f7?




Computing with rational functions and exponential sums
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— .
= ije)‘jk () = 2321’7ij cot (m(z —¢5))
m
ift(R,y,) > i1 7 oot (m(z — 1))
—
(Fourier space) (Time)

10'65

(Prony’s method alone)

; | ( PronyAA |
. A Fourjey transform) |

Crror

108§

1 -9 -~ 4 4 4 L -
0 0 500 1000 I 1500 2000 2500

107°

(Prony s method alone)

(YYY

B

(PronyAAA + Fourier transform)

o

15
10°
2

.CL'

0.8 1



Computing with rational functions and exponential sums

ft(rm,)

R (k) = iwje/\jk -— Y () = Z?%%fj cot (m(z —t;))
j=1 ift(Rm) Zj:l Y5 cot (W(x _ tj))
—

Exponential sums Barycentric form
Robustness to noise Imputing missing data
Filtering and recompression  Differentiation (closed-form formula)
Pole symmetry preservation Stable evaluation
convolution, cross-correlations Rootfinding, identifying extrema,




_ Data-driven computing with
. [ J [ ] [ J
w1l  rational functions and exponential sums
Automatic denoising

6001 noisy samples from a hydrophone
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Big idea 3: closed-form approximations
(via integration + quadrature)

When is it worth it to develop a closed-form solution?

*  When closed-form “relatives” exist and can be studied.
 When the payout is big! Error analysis is valuable, solves related problems, etc.

*  When the continuous problem really matters!

Example: The pth root function on |0, 1].



The square root problem is linked to many
important problems in computational
mathematics...

The best relative rational approximation to /x
with k poles on the interval [5,1], 5 > 0.

relative error when k = 3
><10-6

(Y. . Zolotarev) of




e Analysis of iterative solvers for matrix equations.

[Druskin, Knizhnerman and Simoncini, Beckermann, Sabino, Penzl ...]
e Efficient solvers for Sylvester and Ricatti matrix equations. W., Townsend (2018)
[Simoncini, Palitta, Benner, Bujanovi¢, Kurshcher, Saak, Breiten, Wong, Balakrishnan, Li, Truhar, Li, White,
Bertram, Fal3bender, Kressner, Massei, Robol, Lu, Wachspress, Mehrmann, Gugercin, Sorenson, Penzl, W,' Rubin, Townsend (2022)

R.C. Smith ...]
e Singular value decay in matrices with displacement structure.

[Beckermann, Townsend, Sabino, Rubin, W., ... ]

e Compression properties in tensors/tensor train compression.

[Townsend, Shi, ...]
W., Beckermann, Kressner (2021)

e Fast solvers for certain linear systems Xy = b.
[Martinsson, Rokhlin, Tygert, Chandrasekaran, Gu, Xia, Zhu, Xia, Xi, Gu, Beckermann, Kressner, W. , Epperly, W.] W, Epperly (2022)

e Optimal complexity solvers for some elliptic PDEs. W., Wright, Townsend (2017)
W., Townsend (2018)

[Olver, Townsend, Fortunato, W., Wright, Boullé, ...]

e Matrix evaluation of sign, square root, absolute value, inversion functions.
W., Chen, Martinsson (2022)

[Gawlik, Nakatsukasa, Hale, Higham, Trefethen, ...]

e Divide-and-conquer eigensolvers, polar decomposition algorithms.

[ Nakatsukasa, Freund (2016), ...]

e Digital filters in signal processing.

[ Daniels, ...]




The spectral fractional Poisson equation
and pth root approximations

Let © be a bounded, simply connected, open subset of R?.

Lo — 0%u 0%u
"=\ T T (P.G. Martinsson) (K. Chen)
Let 0 < o < 1. The spectral fractional Poisson equation is the BVP
Lou=f.

u(x) =0, x € 01,

where £ : Hg(ﬂ) — L?. We will be interested in o = 1/p, p pos. integer.



The spectral fractional Poisson equation

Let {(Ag,ex)}72, be eigenvalue-eigenfunction pairs associated with £ on (.

For all £, Axaq1 > A > 0, and as kK — oo, Ay — 0.

“Diffusion of particles with spattering”

-C. Pozrikidis (The Fractional Laplacian)
[(Karnidakas, et. al.), (Pozrikidis) (Shen & Wang) (Harizanov) (Bonito &) ]



The spectral fractional Poisson equation

Suppose we have a rational function r,(z) ~ 2~ /P,

n

Suppose 1, (x) =) . =17 . Then,

(£ =piT)u; =,
ui(z) =0, x €

j=1
This means we can construct B
i~ uas =y, u;, where each u; satisfies -

Fast direct solvers

AY? =1, via UltraSEM

[(Bonito & Pasciak, 2015), (Aceto & Novati, 2017), (Martinsson, 2019) (Fortunato, Hale & Townsend, 2020) ]



The spectral fractional Poisson equation

Key Ingredients: !
1. Excellent fast and accurate solvers for shifted [
Laplace equations on complicated domains. '
2. Excellent rational approximation to z~1/? on 1, 00) |

(Continuous problem, infinite domain)

0

A2 =1, via UltraSEM

[(Bonito & Pasciak, 2015), (Aceto & Novati, 2017), (Martinsson, 2019) (Fortunato, Hale & Townsend, 2020) ]



How to solve it:

Transform to a finite interval:
Let r,(1/x) = y,(x), where x € [0, 1]

Now we must construct v, (z) ~ z'/? on [0, 1].

How to build such a rational function?

Sampling-based methods (fixed or free-pole):

Error blows up in locations off sampling grid as x — 0.

Analytical construction:

Construct a contour integration problem on |5, 1], Apply quadrature to form ,,.
If the contour 4+ quadrature is chosen well, then y, will behave well on [0, 5].



How to solve it: contour integration

L — —
flx) = —/z )z —2) Mz, zeB,1).
211 )
Apply a quadrature rule consisting of k weight-node pairs, {(w;, z;)}5_;:
k
flz) =~ i 4 T —pj where, 7; = w;z; f(2;)dz;.

J:

Key ldea:

Choose the contour and quadrature points cleverly via conformal mapping.

[(Hale, Higham & Trefethen, 2007)]



How to solve it: contour integration

f(x) = Zim / z_lf(z)(z — ) ldz, 4 ¢
v
Let v° = z:
f@) == [ 07 =) o
Yo

Map conformally to a rectangle R
via Schwarz-Christoffel mapping:

v=B"%sn(tlg), ¢=p""?

Apply trapezoidal quadrature rule.

The resulting rational approximation is the best relative approximation to /x

-

on [3,1]!

[(Hale, Higham & Trefethen, 2007)]
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A blueprint for approximations to z'/? on [0, 1]?
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How to solve it: contour integration

Bad extrapolation properties: 5= .5,a=1/2,
yn(x) is good on |5, 1]. Terrible on |0, 5].
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0.15
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How to solve it: contour integration

Getting a good rational function :

10°

balanced . The error is lyn(x) — /x| < n(B) on [0, B].

Y
: The error is |y, (x) — Vx| < Cp™™ on |5, 1],
: where p = exp (72/2log(4/8))

107°

bal d
unbatance For a fixed n, choose $ to balance out

1010 YWW the error distribution. g, (x) = y,|8](x)

0.2 0.4 0.6 0.8 1

B=.5,a=1/2, | |
(Nakatsukasa & Gawlik, 2019), (Harizanov, 2022)



How to solve it: contour integration

Error

10°
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(Nakatsukasa & Gawlik, 2019), (Harizanov, 2022)



How to solve it: contour integration

We extend the mapping + quadrature

+ balancing idea used for the square root
approx. to construct rational
approximations to z'/? on [0, 1].

Our strategy has closed-form expressions.
Poles are always on the negative real line
Exponential convergence rates on |3, 1]
and error on |0, 3] on is loosely bounded
by 105/p. This suggests we can attain
root-exponential convergence.

Number of poles

10 20 30 40



Summary: Three big strategies for
constructing rational approximations

When you know where the singularity lives + have

access to samples: Pole clustering + linear fit to
data!

When you want to know where the singularity lives +
have access to samples: Pole free interpolation
methods!

When you need a continuous or closed-form
solution: Contour integration + quadrature!




Thank you!

REfit for data-driven rational computing:
(open-source package for MATLAB)

My website:
heatherw3521.github.io

Other AMAZING rational approximation tools:

AAA in Chebfun:
www.chebfun.org_(Nakatsukasa, Trefethen, Sete)

RKfit for rational Krylov subspace approximation:
guettel.com/rktoolbox/index.html_(Berljafa, Guttel)



https://www.chebfun.org/
http://guettel.com/rktoolbox/index.html
http://heatherw3521.github.io/

Trigonometric rational functions

f is periodic, real-valued, continuous on [0, 1), fol f(6)de = 0.

We seek r,, = f, where




Trigonometric rational functions

In Fourier space

Key observation: The Fourier series of r,, can be efficiently represented

by a short sum of complex, decreasing exponentials.

0. @)

If r,(z) = Z (P ) k€2 then for k > 0,

k=—oc0
(Tm)ke = R (k) == ije)‘jk,
j=1

where \; = 2min;, Re(n;) > 0.

(Gaspard de Prony)

[ Adamjan, Arov, and Krein (1971), Beylkin and Monzdn (2005, 2009), Pototskaia and Plonka (2016),
Potts and Tasche (2010) ]




The AAA algorithm

Key Idea: greedily build up an interpolant, one point at a time.

Start with sampling locations T' = {x1,...,ZnN}.
Suppose 1, (zx) = f(x) for {xg,...,xn}

(Y. Nakatsukasa) (L.N. Trefethen) (0. Sete)

Determining the barycentric weights:

Here, r,(x) = Z(;:—Eg. Get weights by minimizing || f(X)g,(X) — pn(X)||2

Choosing the next interpolating point:

Ln+1 = argmaXxET\{wo,...,wn}|rn($) o f($)|




PronyAAA algorithm

Advantage for postprocessing: rootfinding

If r27(¢;) = 0 and p = €2™%%  then Ey = pBy, where

B 627rz:1:1 iwleZ'frm:l T B 1 z'wl 7
E = R i 2 . ,B = .
esTrr2m | 49, e TH2m 1 | wwo,
fi fom 0 | 0 - 0 0 |

There are 2m — 2 finite, nonzero eigenvalues.

tages




When are rationals useful?

Matrix function evaluation: (Gawlik, 2020), (Nakatsukasa and Gawlik,

2021), (Braess and Hackbusch, 2005, 2009) (Ward, 1977) (Gosea and Guttel,
2020) and many more...

Eigendecompositions/Polar decomposition: ( Nakatsukasa and Freund, 2015),
(Saad, El-Guide, and Miedlar), (Tang and Polizzi, 2014), (Guttel, 2010), (Ruhe, 1994

and many more...

Solving linear systems/matrix equations: (Ruhe, 1994) (Druskin and
Simoncini, 2011), (Sabino, 2008), (Kressner, Massei, and Robol, 2019),
(Benner, Truhar, and Li, 2009), (W. And Townsend, 2018)many more...

Solving PDEs: (Haut, Beylkin and Monzon 2015), (Trefethen and Tee, 2006 ), (Gopal and
Trefethen, 2019), (Haut, Babb, Martinsson, and Wingate, 2016), many more...

Quadrature, conformal mapping, analytic continuation, digital filter design,
reduced order modeling... (See Approximation Theory and Practice, Ch. 23)




When are rationals useful?
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PronyAAA algorithm

Key Idea: greedily build up an interpolant, one point at a time.

Start with sampling locations T' = {z1,...,zn}.

Suppose the nodes are t = {t1,...,top, } CT

(Y. Nakatsukasa]L.N. Trefethen) o
Sete)

Determining the barycentric weights:

. f )dm () — N — j 2,
riY(z) = n;n—(la(f)c) I Eynelcg EJ-GZT\t( (25)dm(z;) — nm—1(z;))
1 (@) (2) = 1 () st S0ty =0, Il =1

Choosing the next interpolating point:

tom+1 = argmanET\tVfr,z’y(xj) — f(z;)]

[Nakatsukasa, Trefethen, & Séte (2018), Antoulas & Anderson (1986), Berrut (2005), Badoo(2021) ]



Exponential sums to barycentric interpolants

Y ek s XMy fy ot (n(x — 1))
fon(8) = J; ’ Tm(T) = }—_I(Rm)(w) (@) = 23:1 7, cot (m(z — t;))

Exact recovery is an ill-conditioned problem: The choice of t matters greatly.

Idea 1: Apply 2m steps of PronyAAA. (chooses points via greedy residual minimization)

Can be numerically unstable. Loss of accuracy/poles occurring on the interval!




Exponential sums to barycentric interpolants

Y ek s XMy fy ot (n(x — 1))
fim(F) = J; ’ T (T) = }—_I(Rm)(w) ' () = Z?:l 7; cot (m(x — t;))

Exact recovery is an ill-conditioned problem: The choice of t matters greatly.

Apply 2m steps of PronyAAA. (chooses points via greedy residual minimization)

Can be numerically unstable. Loss of accuracy/poles occurring on the interval!

Idea 2: Be greedy about numerical stability instead!
(A new pivoting strategy for AAA based on column-pivoted QR + stabilization)




PronyAAA algorithm

_ > ;i cot (w(x — t5))
" >om v cot (m(x — t5))

e are the poles?
Nothing explicitly enforces that poles are located off [0, 1).

Benign spurious poles: Can be eliminated easily with AAA cleanup routine.

o PO(Q
o 24Y0

He—r——1"
\

%o X, R X3 Xy

Pernicious spurious poles: cannot be eliminated without strongly impacting accuracy.

Pernicious spurious poles appear when...
1. Data is not modeled well by type (m — 1, m) trigonometric rationals.

2. We demand too much accuracy (e.g., machine precision).



Prony’s method

Given (cg,c1,...,Copr41), TECOVET

M
su(l) =Y wie ™", where ¢, = s(¢) for £ 2> 0.
j=1

How can we find each A;?

Prony

M
M Y
Set p(z) =[[;=,(z =), v =e Ad p(z) = Zpkzk (Prony’s polynomial)
k=0
If we can determine p = (po,...,Pm), then this becomes a rootfinding problem.

M M M , M , M i
k
For ¢ > 0, E prs(k+£) = E ij pwj(-ﬂz E:wﬂji :Pk’Yj =0
k=0 j=1 k=0 j=1 k=0

/ Co 1 .o CM
C1 Co oo Cp 41
It H=| . _ ., then Hp = 0.
\CM CM+1 .o CoM )

[Belykin & Monzon (2005, 2009) , Peter & Plonka (2013), Potts & Tasche (2013)]



barycentric to exponential sum

?
m —m

' S22 S fj cot (m(x — t5))
R (k) = wje)”k f,’? _ £g=1 1377 j
jgl i (©) Z?;nl v; cot (m(z — t;))

Key ldea:  Approximate );, and use the “Prony principle”.

¢ Find the poles of ;Y — approximate each \;.

e Evaluate 7% at 2N + 1 points — N Fourier coefficients.

o Solve Vw = s, where s is an O(m) sample of coeffs.

[Miller (1970), Moitra (2016), Transtrum, Matcha and Sethna (2010)]



exponential sum to barycentric:

CPQR-selected interpolation points

Pt (z) = 3257 i cot (m(x — t5)
" 2327:”1 7; cot (m(z — t5))

Let T' = {xg,x1,...,zn} be sample locations. Let {n1,7n2,...,72m} be the poles of ry,.

lig 0 o by
. ik = cot(mn; — mxk)
S
i ’r‘m(xo) .« .. .. Irm(:L-N)

—

K H
_’72m_ 0




exponential sum to barycentric:

CPQR-selected interpolation points

S 5 ki cot (m(z — t5))

R, (k) = wjeAjk ) (z) = 2
(k) =3 @ S et (o~ 1)

j=1 I
\.

Greedily select columns to form the most well-conditioned submatrix.

. [Golub & Busigner (1965), Chandrasekaran & Ipsen (1994), Gu &
Column prOted QR (CPQR) Eisenstat (1996)]

71 0

Y2m | 0

1. CPQR to choose candidates for barycentric nodes.

2. Regularization procedure: Constrained optimization to subselect from
candidate nodes + find weights v = {v1,...,%m}-



AAA-selected and

CPQR-selected interpolation points

Example: f(z) = |sin(w(z — 1/2))| — /2

rp, = apply PronyAAA to data directly.
ro = apply Prony’s method to Fourier coefficients to get R,, then compute

F1(R,) =, using CPQR-selected barycentric nodes.

0 0.2 04 06 0.8

%o © -0 -0 OOOWMWMIO 00 OO Qe

from e 0------ 0---0--0-00- DO 0-0-0---0---—-8-----8---



AAA-selected and CPQR-selected poles

fz) = |sin(n(x —1/2))| —7/2

rp, = apply PronyAAA to data directly.
ro = apply Prony’s method to Fourier coefficients to get R,, then compute

F1(R,) =, using CPQR-selected barycentric nodes.

| ' 1 : :

08 fn Very different pole configurations,
02| : . similar clustering properties.
0.1

e — — Re
-0.1
02/ . ’ 10 10 1072 107! 10°

distances from pole to singularity

-0.31

0.47 0.48 0.49 0;5 0.51 0.52

098 [Na?{g‘}csukasa , Weideman & Trefethen (2021)]



	Slide 1: Learning from the square root function: rational approximation methods in computational mathematics
	Slide 2: When are rationals useful?
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: The square root approximation problem gives us insight into many problems that involve computing with rational functions…
	Slide 8: What is the main challenge? 
	Slide 9: A phase plot of the square root function
	Slide 10: A phase plot of the square root function
	Slide 11: A rational approximation to the square root 
	Slide 12: A rational approximation to the square root 
	Slide 13: A rational approximation to the square root 
	Slide 14: Big idea 1: Cluster poles near singularities!
	Slide 15: Big idea 1: Cluster poles near singularities!
	Slide 16: Big idea 1: Cluster poles near singularities!
	Slide 17: Big idea 1: Cluster poles near singularities!
	Slide 18: Big idea 1: Cluster poles near singularities!
	Slide 19: What happens if I don’t know where the singularities are?
	Slide 20: Big idea 2: free-pole interpolation methods 
	Slide 21: Big idea 2: free-pole interpolation methods 
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 32: Big idea 3: closed-form approximations  (via integration + quadrature)
	Slide 33: The square root problem is linked to many important problems in computational mathematics…
	Slide 34
	Slide 35: The spectral fractional Poisson equation and pth root approximations
	Slide 36: The spectral fractional Poisson equation
	Slide 37: The spectral fractional Poisson equation
	Slide 38: The spectral fractional Poisson equation
	Slide 39: How to solve it:
	Slide 40: How to solve it: contour integration
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 47
	Slide 48: Summary: Three big strategies for constructing rational approximations
	Slide 49: Thank you!
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

