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ABSTRACT

A new low rank approximation method for computing with functions in polar and

spherical geometries is developed. By synthesizing a classic procedure known as the

double Fourier sphere (DFS) method with a structure-preserving variant of Gaussian

elimination, approximants to functions on the sphere and disk can be constructed

that (1) preserve the bi-periodicity of the sphere, (2) are smooth over the poles of

the sphere (and origin of the disk), (3) allow for the use of FFT-based algorithms,

and (4) are near-optimal in their underlying discretizations. This method is used

to develop a suite of fast, scalable algorithms that exploit the low rank form of

approximants to reduce many operations to essentially 1D procedures. This includes

algorithms for differentiation, integration, and vector calculus. Combining these ideas

with Fourier and ultraspherical spectral methods results in an optimal complexity

solver for Poisson’s equation, which can be used to solve problems with 108 degrees

of freedom in just under a minute on a laptop computer. All of these algorithms have

been implemented and are publicly available in the open-source computing system

called Chebfun [21].
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CHAPTER 1

INTRODUCTION

Polar and spherical geometries occupy a central role in scientific computing and

engineering, with applications in fluid dynamics [39, 55], optics [41], astrophysics [3,

11, 29, 51,63], weather forecasting and climate modeling [17, 20, 25,40, 45, 49, 59], and

geophysics [24,80]. Advances in these areas increasingly require accurate and effective

approximation methods for functions defined on the unit disk or the surface of the unit

sphere. To take advantage of convenient algorithms, coordinate transforms are often

applied that map functions in polar and spherical geometries to rectangular domains.

Unfortunately, this method has several significant drawbacks: it introduces one or

more artificial singularities into the problem, making smoothness over the poles of

the sphere (and origin of the disk) difficult to enforce. Interpolation schemes derived

from these mappings typically oversample the function near the singularities, and this

can severely hamper computational efficiency. Additionally, rectangular coordinate

transforms for functions on the sphere destroy the inherent bi-periodicity of such

functions, making the FFT inapplicable in one direction.

This thesis presents a new method for computing with functions in polar and

spherical geometries. By synthesizing a classic technique known as the double Fourier

sphere (DFS) method with a new structure-preserving Gaussian elimination pro-

cedure, many of the issues associated with rectangular coordinate transforms for
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polar and spherical geometries are effectively overcome. This results in an efficient

and adaptive method of approximation for functions on the sphere and disk, with

approximants that enjoy a plurality of desirable attributes: 1) A structure that allows

the use of FFT-based algorithms in both variables, 2) smoothness over the poles of the

sphere (and origin of the disk), 3) stability for differentiation, and 4) an underlying

interpolation grid that rarely oversamples the function.

This approach is used to create an integrated computational framework for work-

ing with functions in polar and spherical settings, including the development and

implementation of algorithms for integration, function evaluation, vector calculus,

and the solving of Poisson’s equation, among many other things. These ideas are

implemented in a software package that is publicly available through the open-source

Chebfun software system, which is written in MATLAB [21]. This development allows

investigators to compute on the sphere and disk without concern for the underlying

discretization or procedural details, providing an intuitive platform for data-driven

computations, explorations, and visualizations, all occurring at an accuracy near

machine precision.

This thesis is organized as follows: A review of global polynomial and trigono-

metric interpolation methods in the 1D setting is given in Section 2.1, as this forms

a basis for our approach. The concept of low rank approximation for 2D functions is

reviewed in Section 2.2, followed by an overview of existing methods of approximation

for functions on the sphere (see Section 2.3) and the disk (see Section 2.4).

In Chapter 3, a classic procedure known as the double Fourier sphere (DFS)

method, as well as its disk analogue, are used to introduce the concept of block-

mirror-centrosymmetric (BMC) structure (see Section 3.1). A new, BMC structure-

preserving Gaussian elimination (GE) procedure is described in Section 3.2, and this
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method is used to construct low rank approximations to functions on the sphere and

the disk. The relationship between this GE procedure, BMC structure, and parity

properties of functions in polar and spherical geometries is discussed in Section 3.4.

Section 3.5 provides theoretical results related to convergence of the GE procedure,

and this is followed by a discussion of near-optimal convergence behaviors observed

in practice (see Section 3.6).

Chapter 4 describes a collection of algorithms for computing on the sphere (see

Section 4.2) and disk (see Section 4.3) through the use of low rank approximations.

These algorithms have been implemented in the Chebfun computing system and are

available for exploration at www.chebfun.org.

Chapter 5 applies the DFS method in conjunction with Fourier and ultraspher-

ical spectral methods to develop optimal Poisson solvers for both the sphere (see

Section 5.1) and the disk (see Section 5.2).

Appendix A offers a collection of observations on the properties of BMC functions,

including a discussion of linear algebra related to discretizations of BMC functions

(see Section A.1), and a derivation of the SVD for BMC functions (see Section A.2).

Appendix B provides an overview of the ultraspherical spectral method, which is used

to formulate a Poisson solver on the disk.

Author Contributions and Related Publications

This thesis is the result of the collective efforts of myself, Prof. Grady Wright (Boise

State Univ.), and Prof. Alex Townsend (MIT). Results related to the sphere and

the initial conception of BMC structure-preserving GE were largely collaborative.

With the guidance of my advisors, I independently extended these concepts to the
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disk, developed the algorithms for numerically computing with functions on the disk,

and created the Diskfun software. I was also the lead author of our paper about

numerical computing with functions on the disk [71]. While writing this thesis and

working closely with my advisors, I additionally developed several new results and

observations that apply to functions on the sphere and the disk. This includes

a proof that the BMC structure-preserving GE procedure in Chapter 3 converges

geometrically (see Section 3.5), an explicit formulation and formal proof that the GE

algorithm preserves BMC structure (see Section 3.2), and an explicit description of

precisely why approximants that have BMC structure are differentiable on the sphere

and disk (see Sections 4.2.4 and 4.3.4).

Overall, two papers related to this research have been produced [70,71]; this work

complements these papers by providing additional insights, results, and examples.

This includes an extended discussion of key notions from approximation theory and

alternate methods of approximation in polar and spherical geometries in Chapter 2,

new results related to the convergence properties of the GE algorithm and parity

properties associated with BMC functions in Chapter 3, the development of a weighted

SVD algorithm for functions on the sphere, as well as additional details concerning

differentiation on the sphere in Chapter 4, and an extended description of a highly

optimized Poisson solver for the disk in Chapter 5. These insights are supplemented

by additional materials contained in the appendices, including observations on BMC

matrices and an explicit derivation of the SVD for BMC functions (Appendix A), and

an overview of the ultraspherical spectral method (Appendix B).
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CHAPTER 2

BACKGROUND

In [4], global polynomial interpolants are used to create a framework for numerically

computing with 1D functions, and this idea is extended to periodic 1D functions in [81]

through the use of trigonometric interpolants. These ideas are implemented within

the software system Chebfun. The extension of these ideas to 2D is presented in [67],

and in this thesis, we develop an analogous approximation method for computing

with functions on the sphere and disk. Using this method, many operations on

bivariate functions can be performed through essentially 1D procedures involving

univariate Fourier and Chebyshev expansions. This makes the method especially

amenable to implementation within Chebfun, where highly optimized algorithms for

a range of operations involving 1D functions are available. We have implemented our

approximation method and the associated algorithms in the Spherefun and Diskfun

software systems, which are available as an integrated part of Chebfun.

Our approximation method requires the use of global polynomial and trigonomet-

ric interpolants to 1D functions, and relies on the convergence properties associated

with these interpolants (see Section 2.1). We also use recent developments in low

rank approximation methods for 2D functions (see Section 2.2.2), and classic tech-

niques associated with numerically representing functions on the sphere and disk (see

Sections 2.3 and 2.4, respectively). This chapter reviews these important ideas, and
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also gives a broad overview of alternative techniques currently used for computing

with functions in polar and spherical geometries.

2.1 1D Function Approximation

2.1.1 Trigonometric Polynomial Interpolation

For approximations to functions on the sphere and disk, we will require the use

of interpolants for periodic functions on [−π, π]. Let f : [−π, π] → C be a 2π-

periodic function that is Lipschitz continuous. Then, f has a unique Fourier series

that converges absolutely and uniformly:

f(x) =
∞∑

k=−∞

c̃ke
ikx, x ∈ [−π, π], (2.1)

where c̃k = 1
2π

∫ π
−π f(x)e−ikx dx are the Fourier coefficients of f . Truncating (2.1)

gives an approximation to f :

fm(x) =
m∑

k=−m

c̃ke
ikx, x ∈ [−π, π]. (2.2)

The function fm is a trigonometric polynomial of degree m, referred to as the degree m

Fourier projection of f . To compute (2.2), we can approximate the integrals defining

each c̃k by using the trapezoidal rule with the following 2m+ 1 quadrature points:

xk = −π +
2kπ

2m+ 1
, 0 ≤ k ≤ 2m. (2.3)

However, as described in [81], this is equivalent to interpolating f at the points

given in (2.3) with the basis functions {eikx} . This finds pm(x), the trigonometric

interpolant to f of degree m, which can be written as

pm(x) =
m∑

k=−m

cke
ikx, x ∈ [−π, π]. (2.4)
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The coefficients {ck} and {c̃k} are related to one-another through an aliasing formula,

so that theoretical results for (2.2) have analogous interpretations for (2.4) [81]. This

is useful because (2.2) is convenient for analytical work, but it is easier numerically

to use (2.4). Here, we list key convergence properties for pm (see [81] and [72] for

related results on fm). The first result is related to the bounded total variation of a

function, defined as follows:

Definition 2.1 (Bounded total variation). A function f(x), x ∈ [a, b] is said to be

of V bounded total variation if

V =

∫ b

a

|f ′(x)| dx <∞.

This notion can be used to understand the rate of convergence for trigonometric

interpolants of differentiable functions. In the following theorems, ||·||∞ is the infinity

norm, i.e., ||f ||∞ = sup{|f(x)| : x ∈ [−π, π]} .

Theorem 2.1 (Convergence for differentiable periodic functions). For ν ≥ 1, let f

be ν times differentiable, 2π-periodic function on the interval [−π, π], with f (ν) of

bounded total variation V . Let pm be the degree m trigonometric interpolant of f as

in (2.4). Then, for m ≥ ν,

||f − pm||∞ ≤
2V

πνmν ,

i.e., ||f − pm||∞ = O(m−ν).

If f is analytic, convergence depends on the region for which f is analytically

continuable in the complex plane.

Theorem 2.2 (Convergence for analytic periodic functions). If f is a 2π-periodic

function on the interval [−π, π], f(z) is analytic, and for some finite constant M > 0,
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|f(z)| ≤ M in an open strip of half-width α > 0 around the real axis in the complex

z-plane, then

||f − pm||∞ ≤
4Me−αm

eα − 1
,

i.e., ||f − pm||∞ = O(e−αm).

The proofs for these theorems are given in [81], and rely on related theorems

about the rates of decay of the coefficients in (2.4). These theorems state specific

results associated with a general maxim in approximation theory: the smoother

a function is, the faster its approximants converge. Trigonometric interpolants to

periodic functions that are ν-times differentiable (with a νth derivative of bounded

total variation) converge at algebraic rates. Interpolants to functions that are analytic

converge at geometric rates, and interpolants to functions that are entire converge

super-geometrically. Thus, for sufficiently smooth periodic functions, trigonometric

interpolation offers an excellent method of approximation.

Henrici describes a procedure for evaluating pm at any point x∗ ∈ [−π, π] in only

O(N) operations [35], where N = 2m+1 is the number of interpolation points in (2.3).

Alternatively, pm can be uniquely represented by the set of coefficients {ck}mk=−m.

Given the values of f(xk) at each xk in (2.3), the FFT finds {ck}mk=−m in only

O(N logN) operations. Likewise, if {ck}mk=−m are known, the inverse FFT provides

an efficient way to sample f , givings its values at each xk in (2.3) in O(N logN)

operations.

2.1.2 Chebyshev Polynomial Interpolation

For numerically representing functions on the disk, we require approximations to

functions defined on the interval [−1, 1].
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Im
(z

)

Re(z)
Figure 2.1: The (2n)th roots of unity for n = 16 are plotted on the unit circle.
Their projection to the real axis results in the Chebyshev points (red) on the interval
[−1, 1].

Let f : [−1, 1]→ C be any continuous function. Without the assumption of peri-

odicity, interpolants to f at equally-spaced points over [−1, 1] become exponentially

ill-conditioned, with interpolants at n points potentially producing numerical errors

of size O(2n), even in cases where f is analytic on [−1, 1] [74, Ch. 13]. For this reason,

we seek an alternate set of interpolation points.

Consider the set of n+ 1 equally-spaced angles {θk}nk=0, θk ∈ [0, π]. These angles

are the arguments for the (2n)th roots of unity {zk = eikπ/n}nk=0. The points

xk = Re(zk) are called the Chebyshev points, and can be expressed conveniently as

xk = − cos

(
kπ

n

)
, 0 ≤ k ≤ n. (2.5)

Interpolating f at the n + 1 Chebyshev points gives an approximation to f that

is closely related to the expansion of f in the Chebyshev polynomial basis. The

Chebyshev polynomial of degree n is defined as

Tn(x) = cos(nθ), θ = cos−1(x), x ∈ [−1, 1].

Chebyshev polynomials are orthogonal with respect to the weight function (1−x2)−1/2,

so that
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< Tm, Tn >w =
2

π

∫ 1

−1

Tm(x)Tn(x)√
1− x2

=


2, m = n = 0,

1, m = n, m, n 6= 0

0, m 6= n.

(2.6)

These polynomials form a complete basis for functions on [−1, 1] that are square-

integrable with respect to (2.6), and for such a function f , there exists a unique

series

f(x) =
∞∑
k=0

ãkTk(x), x ∈ [−1, 1], (2.7)

that converges absolutely and uniformly to f . Truncating this series to n + 1 terms

forms the approximant fn, known as the degree n Chebyshev projection of f . As with

trigonometric polynomial approximation, it can be more convenient computationally

to consider the unique interpolant to f at the n+ 1 Chebyshev points:

pn(x) =
n∑
k=0

akTk(x), x ∈ [−1, 1]. (2.8)

Here, each ak is related to ãk through an aliasing formula [74], and theoretical results

for fn correspond closely to results for pn. Chebyshev interpolants are known to have

very good convergence properties for functions with some degree of smoothness, and

we give two essential results here.

Theorem 2.3 (Convergence for differentiable functions). Let f be ν ≥ 1 times

differentiable on [−1, 1] with f (ν) of bounded variation V . If pn is the degree n

Chebyshev interpolant of f given by (2.8), then for any n ≥ ν,

||f − pn||∞ ≤
4V

πν(n− ν)ν
,

i.e., ||f − pn||∞ = O(n−ν).

If f is analytic on [−1, 1], the rate of convergence depends on the region for which

f is analytically continuable; this can be formalized through the concept of Berstein
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Im
(z

)

Re(z)
Figure 2.2: Berstein ellipses of increasing size. The ellipses correspond to the
respective parameters ρ = 1.1, 1.2, . . . 1.8, 2, with innermost ellipse having ρ = 1.1.

ellipses, defined below.

Definition 2.2 (Berstein ellipse). The Berstein ellipse Eρ, ρ > 1, is the open region

of the complex plane bounded by an ellipse with foci at ±1 and a semimajor and

semiminor axis that sum to ρ.

Figure 2.2 displays Berstein ellipses for several choices of ρ. Using Berstein ellipses,

we can precisely describe the convergence behavior of Chebyshev interpolants to

analytic functions.

Theorem 2.4 (Convergence for analytic functions). Let f be analytic on [−1, 1]

and analytically continuable to the Berstein ellipse Eρ, satisfying |f | < M for some

constant M > 0. If pn is the degree n Chebyshev interpolant to f , then

||f − pn||∞ ≤
4Mρ−n

ρ− 1
,

i.e., ||f − pn||∞ = O(ρ−n).

Proofs of Theorems 2.3 and 2.4 can be found in [74]. These theorems show that

for sufficiently smooth functions, Chebyshev interpolants have excellent convergence
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properties. In fact, Chebyshev interpolants offer a near-best approximation for con-

tinuous functions. In [74, Ch. 16], it is shown that if f is continuous on [−1, 1] and

p∗n is the best degree n polynomial approximation to f with respect to the infinity

norm, then

||f − pn||∞ ≤
( 2

π
log(n+ 1) + 2

)
||f − p∗n||∞.

This inequality states that the difference between the best approximation to f and the

Chebyshev interpolant to f is at maximum O(log n). Asymptotically, one cannot do

better than this: it is shown in [12] that for any set S of n+1 distinct points on [−1, 1],

there always exists a continuous function f such that the polynomial interpolant p†n

to f on S satisfies

||f − p†n||∞ ≥
(
1.52125 +

2

π
log(n+ 1)

)
||f − p∗n||∞.

It is in this sense that Chebyshev interpolants offer a near-best approximation to f ,

and this idea is made precise in [74, Ch. 15].

Chebyshev interpolants possess one more important quality: Given the values of

f at the n + 1 Chebyshev points, the coefficients in (2.8) can be computed through

the fast cosine transform in only O(n log n) operations. The inverse of this operation

also costs only O(n log n) operations, providing a convenient way to sample f when

the coefficients in (2.8) are known.

2.2 Low Rank Approximation for 2D Functions

In [67], a general approach for computing with 2D functions over a bounded rectan-

gular domain is established through methods of low rank approximation, and we will
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use this idea in Chapter 3 to develop a low rank approximation method for functions

in spherical and polar geometries. Here, we review the concepts from [67].

Let f(x, y) be a bivariate function on [−1, 1]2, and note that any function on

a more generalized rectangular domain can be mapped to [−1, 1]2 by a change of

variables. A nonzero function f is called a rank 1 function if it can be written as a

product of two univariate functions, i.e., f(x, y) = c(y)r(x). A function is of at most

rank K if it can be written as a sum of K rank 1 functions. While most functions

are mathematically of infinite rank, smooth functions can typically be approximated

to machine precision by a rank K truncation, i.e.,

f(x, y) ≈
K∑
j=1

cj(y)rj(x)︸ ︷︷ ︸
fK

, (2.9)

for some relatively small K [64]. In practice, we are interested in the numerical rank

of f . This is the minimum rank required to approximate f within some tolerance,

such as machine epsilon, using any bounded function on [−1, 1]2 of finite rank. For a

prescribed value ε > 0, this is given by

kε = min{K ∈ N : inf
fK
||f − fK ||∞ ≤ ε||f ||∞},

where the inner infimum is taken over the set of bounded rank K functions on

[−1, 1]2 [64].

The primary advantage of using low rank approximations is evident in [67] and

in Chapter 4 of this thesis, where several algorithms are devised that exploit the

low rank form in order to use highly efficient 1D procedures. To use this form of

approximation effectively, several questions are in order: (1) Can every function be

written as an expansion of rank 1 terms? (2) Is there an efficient mechanism for
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constructing low rank approximations to an arbitrary function? (3) What are the

convergence properties of low rank approximations to functions? We will additionally

be concerned with whether an adaptive low rank approximation method can be

developed that preserves inherent geometric features of functions defined in polar

and spherical geometries.

2.2.1 The Singular Value Decomposition

We examine questions (1)-(3) by considering the best rank K approximation to f .

For the L2 norm, this is given by the singular value decomposition (SVD), also called

the Karhunen–Loève expansion, for bivariate functions [53]. It is shown in [33] that

if f is Lipschitz continuous in both variables, then the SVD converges absolutely and

uniformly to f . Then, f is expressed by

f(x, y) =
∞∑
j=1

σjuj(y)vj(x), (x, y) ∈ [−1, 1]2. (2.10)

Here, the singular values {σj}∞j=1 are non-negative, real, nonincreasing, and

limk→∞ σk → 0. The sets of continuous singular functions, {uj}∞j=1 and {vj}∞j=1, are

each orthonormal with respect to the L2 inner product on [−1, 1]. Furthermore, the

set {σj} is uniquely determined for f , and the singular functions corresponding to

each simple σj are unique up to complex signs.

In [53], it is shown that the best rank K approximation to f in the L2 norm

is formed by truncating (2.10) to K terms. For this reason, the SVD is said to

provide an optimal rank K approximation to f . In [69], it is shown that properties

of convergence for the SVD are linked to the smoothness of the function. Given any

fixed choice of x∗ ∈ [−1, 1], suppose that f(x∗, y) is ν times differentiable in y with

a νth derivative of variation that is uniformly bounded with respect to x∗. If fK is
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the rank K truncation of the SVD of f , then the error ||f − fK ||∞ decays at the

rate of O(K−ν). If all f(x∗, y) are analytically continuable to a Bernstein ellipse of

parameter ρ in the complex plane that contains the interval [−1, 1], then ||f − fk||∞
decays at a geometric rate prescribed by ρ [69].

For such functions, the continuous SVD can be explicitly constructed by first

performing the continuous analogue to LU factorization on f , and then performing a

QR factorization the resulting quasimatrices [69]. Alternatively, one could sample f

and numerically compute the SVD of the resulting matrix using standard techniques.

The cost of computing the SVD is O(N3) operations, where N is the number of

samples required to resolve f to a specified tolerance in both x and y.

The SVD shows us that at least one method of low rank approximation exists for

a large class of functions. The approximants have very good convergence properties,

but they are computationally expensive to construct. For this reason, we seek an

alternative technique.

2.2.2 Iterative Gaussian Elimination on Functions

Given a matrix A of rank n, K < n steps of Gaussian elimination (GE) with complete

or rook pivoting can be used to construct a near-best rank K approximation to A,

provided that the singular values of A decay sufficiently fast [28]. Using a variety

of pivoting strategies, methods such as adaptive cross approximation [6], two-sided

interpolative decomposition [32], and Geddes–Newton approximation [16] apply GE

in the continuous setting to create low rank approximations to functions. In [67],

an adaptive, iterative variant of GE with complete pivoting is used to develop a

framework for computing with 2D functions in the Chebfun software system. Our
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procedure for approximating functions in polar and spherical geometries is based on

an extension of this idea (see Chapter 3).

Standard GE on a matrix A with complete pivoting proceeds by choosing the

entry with the maximal absolute value, A(i, j), as a pivot. At each GE step, a rank

1 matrix is formed from this pivot and subtracted from A:

A← A− A(:, j)A(i, :)/A(i, j),

where A(:, j) is jth column of A, and A(i, :) is the ith row of A. This step zeros out

the row and column containing the pivot and also reduces the rank of A by one. The

resulting matrix is called the residual. The process is then repeated on the residual,

and the algorithm proceeds until the residual is the zero matrix. Summing the first

K rank 1 matrices formed within this process provides a rank K approximation to

A.

In a similar way, given a function f(x, y), denote the maximum absolute value of

f for (x, y) ∈ [−1, 1]2 as f(x∗, y∗). Replacing A with f , the GE step is given by

f(x, y) ←− f(x, y)− f(x∗, y)f(x, y∗)

f(x∗, y∗)︸ ︷︷ ︸
A rank 1 approx. to f

. (2.11)

In this scheme, the functions f(x∗, y) are referred to as “column slices” of f . Similarly,

f(x, y∗) are “row slices.” As with GE on matrices, the GE step produces a residual

such that f(x∗, y) = f(x, y∗) = 0. Unlike a matrix, f is typically of infinite rank,

so the GE procedure is terminated after the absolute maximum of the residual falls

below some specified relative tolerance, such as the product of machine epsilon and

the (approximate) maximum value of the function. The number of steps required to

achieve this is an upper bound on the numerical rank1 of f , and as discussed in [64],

1This upper bound is a good estimate of the true numerical rank of f , and we use it interchange-
ably with the term numerical rank in the remainder of this thesis.
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smooth functions are typically of low numerical rank.

Each time we apply a GE step to f , a rank 1 function is selected. After K steps,

we can collect these rank 1 functions and construct a rank K approximation to f :

f(x, y) ≈
K∑
j=1

djcj(y)rj(x). (2.12)

Here, dj is a coefficient derived from the jth pivot, and cj(y) and rj(x) are the

jth column and row slices, respectively, selected during the GE procedure. The

computational cost of performing K steps of GE on f is O(K3). Each univariate

function in (2.12) is then adaptively resolved in O(K2(m + n)) operations, where m

and n are the maximum number of samples required to resolve each cj(y) and rj(x),

respectively [67].

In [64], it is shown that this GE procedure is a near-optimal and highly efficient

method for approximating 2D functions in standard rectangular domains. We now

turn to the specific challenges associated with numerically representing functions in

polar and spherical geometries.

2.3 Existing Approximation Methods for Functions on the

Sphere

To numerically represent 2D functions that are defined on the surface of the unit

sphere, it is convenient to relate computations with functions on the sphere to func-

tions defined over a rectangular domain. Given a function f(x, y, z) in Cartesian

coordinates, the spherical coordinate transform is given by

x = cosλ sin θ, y = sinλ sin θ, z = cos θ, (λ, θ) ∈ [−π, π]× [0, π], (2.13)
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where λ is the azimuth angle and θ is the polar (or zenith) angle (measured from

the north pole). This change of variables allows one to compute with the function

f(λ, θ), as opposed to f(x, y, z) restricted to the surface of the sphere.

Unfortunately, this transform introduces artificial singularities at the north and

south poles, since, by (2.13), for all λ ∈ [−π, π], (λ, 0) maps to (0, 0, 1), and (λ, π)

maps to (0, 0,−1). Furthermore, the mapping does not preserve the natural periodic-

ity of f in the latitude direction. The introduced singularities act as north and south

boundaries on the rectangle, making smoothness over the poles difficult to enforce.

This mapping is also problematic for interpolation schemes, as it results in grids on

the sphere that are severely and redundantly clustered near the poles.

The approach we develop in Ch. 3 resolves these issues. Through the use of

the double Fourier sphere (DFS) method (see Section 3.1), the periodicity of f in θ

is recovered. We combine this scheme with a new, structure-preserving low rank

approximation method, and this mitigates the unphysical effects of the artificial

singularities, as well as issues associated with oversampling f near the poles. Below,

we review some alternative techniques for computing on the sphere in order to put

our new method in context.

2.3.1 Spherical Harmonic Expansions

Spherical harmonics are an appealing choice for representing functions on the surface

of the sphere [2, Chap. 2] because they are analogous to trigonometric expansions

for periodic functions. They have been used extensively and effectively in weather

forecasting [20, Sec. 4.3.2], least-squares filtering [37], and for finding the numerical

solution of separable elliptic equations. The truncated spherical harmonic expansion

of f of degree N is
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f(λ, θ) ≈
N∑
`=0

∑̀
m=−`

c`,mY
m
` (λ, θ), (2.14)

where Y m
` is the spherical harmonic function with degree ` and orderm [47, Sec. 14.30],

and

c`,m =

∫ 2π

0

∫ π

0

Y m
` (λ, θ)f(λ, θ) sin θ dθ dλ.

The truncated expansion (2.14) provides essentially uniform resolution of f over

the sphere. The coefficients 0 ≤ ` ≤ N and c`,m for −` ≤ m ≤ ` in (2.14) can

be approximated with a discrete spherical harmonic transform, and there are fast

O(N2 logN) complexity algorithms available for these transforms [46, 76]. However,

highly adaptive discretizations are computationally unfeasible in this setting due to

a high preprocessing cost associated with these algorithms. In our setting, fast and

highly optimized algorithms are more readily available via the FFT.

2.3.2 Quasi-isotropic Grid-based Methods

Quasi-isotropic grid-based methods, such as those that use the “cubed-sphere” (“quad-

sphere”) [52, 62], geodesic (icosahedral) grids [5], or equal area “pixelations” [31],

partition the sphere into (spherical) quads, triangles, or other polyhedra. This avoids

introducing artificial singularities and results in far less oversampling of functions

compared to grids designed by standard coordinate transforms. They are particularly

useful for computations in which 3-5 digits of accuracy are sought and they are also

highly amendable to parallelization. However, for 8-15 digits of accuracy, sample

points usually become clustered along the artificial boundaries associated with these

grids. Our GE procedure takes function samples that are adaptively selected during

the approximation process, and our interpolation grids are composed of a sparse
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tensor product of 1D uniform grids (see Figure 3.6) that only cluster if the function

itself requires it.

2.3.3 Radial Basis Functions

Radial basis functions (RBFs), or spherical basis functions [23], allow one to place

sampling points at any location on the sphere. This is highly advantageous as

sampling can be tailored to capture a function’s features of interest, and these meth-

ods have been successfully applied in numerical weather prediction and solid earth

geophysics calculations [24,80].

While spectral accuracy is possible with these methods, the state-of-the-art al-

gorithms have a computational complexity that grows cubically in the total degrees

of freedom [27]. Consequently, these methods are currently too costly for general

purpose computations with functions on the sphere.

2.3.4 The Double Fourier Sphere Method

The double Fourier sphere (DFS) method is a technique that can be used to recover

the periodicity of the sphere in the latitude direction [45]. This method forms one

of the pillars of our new approximation technique, so we hold off reviewing it until

Chapter 3.

2.4 Existing Approximation Methods for Functions on the

Disk

A function g(x, y) defined in Cartesian coordinates on the unit disk can be converted

to a function in polar coordinates, g(θ, ρ), through the transformation
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x = ρ cos θ, y = ρ sin θ, (θ, ρ) ∈ [−π, π]× [0, 1]. (2.15)

This relates a function on the disk to a function defined over a rectangular domain,

where more convenient algorithms can be applied. Unfortunately, this transform

introduces an artificial singularity and unphysical boundary at ρ = 0. One solution

involves expanding g(θ, ρ) in a basis that inherently enforces smoothness over ρ = 0,

but such basis choices are not associated with fast transforms.

Unsatisfied with choosing between the use of fast algorithms and smoothness at the

origin, we present an efficient method in Chapter 3 that prioritizes both. We expand g

in the Fourier–Chebyshev basis so that fast, FFT-based algorithms are applicable, but

combine an analogue of the DFS method (see Section 3.1) with a structure-preserving

Gaussian elimination (GE) procedure to enforce that approximants are smooth over

the origin. Below, we offer a brief discussion of alternative strategies.

2.4.1 Radial Basis Functions

As a mesh-free method, radial basis functions are useful for applications on a variety of

geometries, such as the sphere and disk [26] (for more discussion, see Section 2.3.3).

In [36] and [38], an algorithm for approximations on the disk is developed that

arranges interpolation points so that the computational cost of the method reduces

from O(N3) to O(N logN) operations, where N is the number of function samples

taken. Unfortunately, ill-conditioning prevents this method from reaching machine

precision, which is what we require.



22

2.4.2 Conformal Mapping

Using the inverse of the cosine leminiscate function, a function g on the unit disk can

be mapped conformally to the unit square [1, 54]. This allows g to be expressed as a

bivariate Chebyshev expansion so that FFT-based transforms are applicable.

Unfortunately, the mapping introduces four artificial singularities corresponding

to the corners of the unit square. Interpolation grids based on this scheme are unneces-

sarily redundant near these singularities, and this adversely affects the computational

efficiency gained from use of the FFT. In contrast, our approach also enables the use of

FFT-based transforms, but we combine this with an adaptive low rank approximation

procedure that does not oversample the function.

2.4.3 Basis Expansions

Observing in (2.15) that g is periodic in θ, an approximation to g can be obtained

from a Fourier expansion in θ:

g(θ, ρ) ≈
m/2−1∑
k=−m/2

φk(ρ)eikθ, (θ, ρ) ∈ [−π, π]× [0, 1], (2.16)

where we assume m is an even integer2 and φk(ρ) is a function to be selected. The

most appropriate basis for expanding φk(ρ) is not immediately obvious. Below, we

discuss three of the most common choices.

2.4.3.1 Cylindrical Harmonic Expansions

Cylindrical harmonics are the natural analogue of the spherical harmonics, as they

are the eigenfunctions of the Laplace operator in cylindrical coordinates at a fixed

2Section 2.1.1 is a more generalized discussion of the properties of Fourier series, and there we
use an index from −m to m for convenience.
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height [19]. If g is sufficiently smooth and satisfies g(θ, 1) = 0, an approximation to

g is given by

g(θ, ρ) ≈
m/2−1∑
k=−m/2

n−1∑
j=0

ajkJk(ωkjρ)eikθ, (θ, ρ) ∈ [−π, π]× [0, 1], (2.17)

where Jk is the kth order Bessel function, and ωkj is the jth positive root of Jk [19,

Ch. 9]. This expansion can also be modified to include a inhomogeneous boundary

condition. For (2.16) to be infinitely differentiable, each φk(ρ) must decay like ρk or

faster near ρ = 0. The cylindrical harmonics are attractive because they inherently

satisfy this condition. However, there is no readily available fast transform for

computing the coefficients in (2.17), and for this reason, we do not use cylindrical

harmonics in our approach.

2.4.3.2 One-sided Jacobi Polynomial Expansions

Expressing φk(ρ) with one-sided Jacobi polynomials results in an expansion of g(θ, ρ)

in the Zernike polynomial basis, Zk
j (θ, ρ) [10, 78]. This set of polynomials is con-

sidered theoretically analogous to the Legendre polynomials due to its orthogonality

properties [7]. Using this expansion,

g(θ, ρ) ≈
m/2−1∑
k=−m/2

n−1∑
j=0

ajkρ
|k|P

(0,k)
j (2ρ2 − 1)eikθ, (2.18)

where P
(0,k)
j is the Jacobi polynomial of degree j with parameters (0, k). Terms

in this expansion inherently satisfy smoothness conditions because they include a

kth order zero at ρ = 0. The Zernike polynomials are often considered the basis

of choice for approximation on the disk, and have been used to develop a method

that results in sparse operators for solving the Helmholtz and Poisson equations [44].

Recently, a whole hierarchy of bases related to the one-sided Jacobi polynomials has
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been developed to capture the regularity of vector- and tensor-valued functions on

the disk [77].

The primary disadvantage of using the one-sided Jacobi polynomials is the lack of

a fast transform for computing the coefficients in (2.18). Since our approach relies on

an interpolative, data-driven and adaptive scheme, we require fast transforms, and

therefore do not make use of one-sided Jacobi expansions.

2.4.3.3 Fourier–Chebyshev Expansions

Expanding φk(ρ) in the Chebyshev basis gives the Fourier–Chebyshev approximation

to g:

g(θ, ρ) ≈
m/2−1∑
k=−m/2

n−1∑
j=0

ajkTj(2ρ− 1)eikθ, (θ, ρ) ∈ [−π, π]× [0, 1], (2.19)

where Tj(·) is the degree j Chebyshev polynomial defined on [−1, 1]. By sampling

g on an n × m Fourier–Chebyshev tensor product grid, the coefficients in (2.19)

can be found in only O(mn log(mn)) using FFT-based algorithms. Problematically,

this choice does not naturally impose smoothness over the origin, and grids based

on this expansion unnaturally cluster near ρ = 0 [25]. Our approach resolves these

drawbacks by combining the disk analogue to the DFS with a structure-preserving

low rank construction procedure (see Chapter 3).

2.4.4 The Disk Analogue to the Double Fourier Sphere Method

There are several spectral collocation schemes involving Fourier–Chebyshev grids that

alleviate the induced overresolution near ρ = 0 by double-sampling g so that

ρ = 0 is not treated as a boundary [22, 25, 34]. In Section 3.1, we observe that this
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action is analogous to the DFS method. As it forms a crucial component of our new

approximation strategy, we defer a detailed discussion until Chapter 3.
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CHAPTER 3

LOW RANK APPROXIMATION OF FUNCTIONS IN

SPHERICAL AND POLAR GEOMETRIES

In this chapter, we develop a new method for approximating functions on the sphere

and disk. The double Fourier sphere (DFS) method (see Section 3.1) is applied to

a function defined on the sphere or disk, and this introduces a crucial symmetry

structure related to the geometry of the domain. In Section 3.2, we develop a variant

of GE that generates low rank approximants while exactly preserving this structure,

and in Sections 3.3-3.6, we analyze several features of the new GE procedure. This

new method results in approximants with several desirable properties that can be

exploited to create highly efficient algorithms (see Chapter 4).

We will begin by considering functions defined on the unit sphere. Each obser-

vation we make has an analogous interpretation for functions defined on the disk.

At certain points in the chapter, it is more convenient to generalize by discussing a

broader class of functions that is inclusive of functions on the sphere or disk.

3.1 Intrinsic Structures for Functions on the Sphere and Disk

Merilees [45] observed that a simple technique can be used to transform a function

on the surface of the sphere to one on a rectangular domain while simultaneously

preserving the periodicity of the function in the both the longitude and latitude
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directions. This idea, known as the double Fourier sphere (DFS) method, was

developed further by Orszag [49], Boyd [8], Yee [82], Fornberg [25], and Cheong [17].

Transforming f(x, y, z) on the sphere to a function f(λ, θ) in spherical coordinates

using (2.13) yields

f(λ, θ) = f(cosλ sin θ, sinλ sin θ, cos θ), (λ, θ) ∈ [−π, π]× [0, π].

With this transformation, the periodicity in the latitude direction has been lost. The

DFS method proceeds by “doubling up” the function to form an extension of f on

(λ, θ) ∈ [−π, π]× [−π, π]. The extension is given by

f̃(λ, θ) =


p(λ+ π, θ), (λ, θ) ∈ [−π, 0]× [0, π],

q(λ, θ), (λ, θ) ∈ [0, π]× [0, π],

p(λ,−θ), (λ, θ) ∈ [0, π]× [−π, 0],

q(λ+ π,−θ), (λ, θ) ∈ [−π, 0]× [−π, 0],

(3.1)

where p(λ, θ) = f(λ − π, θ) and q(λ, θ) = f(λ, θ) for (λ, θ) ∈ [0, π] × [0, π]. The

function f̃ is 2π-periodic in λ and θ, and is constant along the lines θ = 0 and

θ = ±π, corresponding to the poles. With a slight abuse of notation, we depict f̃ as

f̃ =

[
p q

flip(q) flip(p)

]
, (3.2)

where flip refers to the MATLAB command that reverses the order of the rows of a

matrix. The extension (3.1) is also called a glide reflection in group theory [42, §8.1].

As depicted in Figure 3.1 and seen in (3.2), the extended function f̃ has a structure

close to a 2 × 2 centrosymmetric matrix, except that the last block row is flipped

(mirrored). For this reason, we say that f̃ in (3.1) has a block-mirror-centrosymmetric

(BMC) structure. This is formally defined as follows:

Definition 3.1. (Block-mirror-centrosymmetric functions) Let a, b ∈ R+. A function

f̃ : [−a, a] × [−b, b] → C is a block-mirror-centrosymmetric (BMC) function if there
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are functions p, q : [0, a]× [0, b] → C such that

f̃(ξ, η) =


p(ξ + a, η), (ξ, η) ∈ [−a, 0]× [0, b],

q(ξ, η), (ξ, η) ∈ [0, a]× [0, b],

p(ξ,−η), (ξ, η) ∈ [0, a]× [−b, 0],

q(ξ + a,−η), (ξ, η) ∈ [−a, 0]× [−b, 0].

(3.3)

Using (3.1), every continuous function on the sphere can be extended to a continu-

ous BMC function defined on [−π, π]×[−π, π] that is 2π-periodic (bi-periodic) in both

variables. However, the converse is not true. It is possible to have a continuous BMC

function that is bi-periodic but is not constant at the poles, i.e., along the lines θ = 0

and θ = π, and therefore is not associated with a continuous function on the sphere.

For example, the function f(λ, θ) = cos(2θ) cos(2λ) is a bi-periodic BMC function,

but it is not constant when θ = 0 or θ = π. We capture this important aspect of

BMC functions created through the DFS method with the following definition:

Definition 3.2 (BMC-I functions). A function f̃ : [−a, a]× [−b, b]→ C is a Type-I

BMC (BMC-I) function if it is a BMC function, and additionally, there are constants

C1 and C2 such that f(·, 0) = C1 and f(·,±b) = C2.

By operating on the BMC-I function f̃ , we can incorporate a structure associated

with the sphere into our computations and relate the result back to f . It is fundamen-

tal that any approximant to f̃ possess BMC-I structure, and the structure-preserving

GE procedure in Section 3.2 is designed with this in mind. Figure 3.2 illustrates the

importance of this fact: pole singularities are introduced when the approximation

strategy does not enforce BMC-I structure, and this reduces accuracy in subsequent

computations, such as differentiation.

The DFS method can also be applied to functions on the disk. Consider the

function g(θ, ρ) in (2.15), and recall that this transformation introduces an artificial
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Figure 3.1: The DFS method applied to the globe. (a) An outline of the land masses
on the surface of earth. (b) The projection of the land masses using latitude-longitude
coordinates. (c) Land masses after applying the DFS method, shown in extended
coordinates with the dashed line indicating the south pole. This is a BMC-I “function”
that is periodic in longitude and latitude.

boundary at ρ = 0 (see Section 2.4). By expanding the domain of ρ from [0, 1] to

[−1, 1], g can be extended to form a new function, g̃ : [−π, π]× [−1, 1]→ C, so that

ρ = 0 is no longer treated as a boundary. Mathematically, this extension of g can

be expressed via functions p(θ, ρ) and q(θ, ρ), (θ, ρ) ∈ [0, π] × [0, 1]. The extended

function g̃ is given by

g̃(θ, ρ) =


q(θ + π, ρ), (θ, ρ) ∈ [−π, 0]× [0, 1],

p(θ, ρ), (θ, ρ) ∈ [0, π]× [0, 1],

q(θ,−ρ), (θ, ρ) ∈ [0, π]× [−1, 0],

p(θ + π,−ρ), (θ, ρ) ∈ [−π, 0]× [−1, 0],

(3.4)

and we observe in (3.4) that g̃ also possesses BMC symmetry (see Def. 3.3). This idea

is conceptually analogous to the DFS method, although the original motivations for

its development were quite different. On the disk, the method was devised in order
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(e) (f) (g) (h)

Figure 3.2: Low rank approximants to a function on the sphere, f̃ = cos(1 +
2π(cosλ sin θ + sinλ sin θ) + 5 sin(π cos θ)), (λ, θ) ∈ [−π, π]2. Figures (a)-(d) are the
respective rank 2, 4, 8, and 16 approximants to f̃ constructed by the structure-
preserving GE procedure in Section 3.2. Figures (e)-(h) are the respective rank 2, 4,
8, and 16 approximants to f̃ constructed by the standard GE procedure [67], which
is not designed to preserve the BMC-I structure. In figures (e) and (f), one can see
that a pole singularity is introduced when structure is not preserved.

to alleviate excessive grid clustering near ρ = 0 in Fourier–Chebyshev interpolation

schemes [22,25], and several variants have been proposed [10,34].

Figure 3.3 depicts the disk analogue to the DFS method applied to the Nobel

Prize medal. In addition to having BMC structure, g̃ must be constant along the

line ρ = 0. This feature of g̃ is not shared by all BMC functions, but it is a crucial

property of BMC functions associated with the disk. For this reason, we define a

second variant of BMC functions:

Definition 3.3 (BMC-II function). A function g̃ : [−a, a]× [−b, b]→ C is a Type-II

BMC (BMC-II) function if it is a BMC function and g(·, 0) = constant.

For BMC-II functions associated with the disk via (3.4), a = π, b = 1 and g̃ has

the additional property of being 2π-periodic in θ. We now develop a procedure for
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Figure 3.3: The disk analogue to the DFS method applied to the Nobel Prize
medal. (a) The medal. (b) The projection of the medal using polar coordinates. (c)
The medal after applying the disk analogue to the DFS method. This is a BMC-II
“function” that is periodic in θ and defined over ρ ∈ [−1, 1].

constructing approximants to BMC functions in a way that preserves BMC structure.

3.2 BMC Structure-preserving Gaussian Elimination

Using the DFS method and its disk analogue, we associate the functions f on the

sphere and g on the disk with the BMC-I or BMC-II functions f̃ in (3.1) and g̃

in (3.4), respectively. If we construct approximants to these functions in a way

that preserves BMC-I and BMC-II structures, we can perform computations that

consistently remain associated with the geometry of the sphere or disk. In order to

alleviate issues associated with oversampling the function (see Sections 2.3 and 2.4),

we specifically seek a low rank approximation method.

Section 2.2.2 describes an efficient strategy for constructing low rank approxi-

mations to functions defined on rectangular domains. However, applying the GE

step in (2.11) to a BMC function immediately destroys the BMC structure of the
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function, resulting in approximants that are rarely continuous on the sphere or disk

(see Figure 3.2). To remedy this, we seek a new GE procedure that preserves BMC

structure. We begin by considering a procedure applicable to general BMC functions,

and then adapt the procedure to preserve additional features specifically associated

with BMC-I or BMC-II functions.

3.2.1 A BMC Structure-preserving Gaussian Elimination Step

Without loss of generality, we use the BMC function f̃ on the sphere defined in (3.1)

throughout the discussion. The procedure is the same for functions defined on the

disk via (3.4).

Motivated by the pivoting strategy used for symmetric indefinite matrices [13], we

employ GE with 2 × 2 pivots. Given f̃ , a matrix M is constructed from values of f̃

so that for some (λ∗, θ∗) ∈ [0, π]2,

M =

[
f̃(λ∗ − π, θ∗) f̃(λ∗, θ∗)

f̃(λ∗ − π,−θ∗) f̃(λ∗,−θ∗)

]
=

[
p(λ∗, θ∗) q(λ∗, θ∗)
q(λ∗, θ∗) p(λ∗, θ∗)

]
=

[
p∗ q∗

q∗ p∗

]
, (3.5)

where p(λ∗, θ∗) = p∗, q(λ∗, θ∗) = q∗, and functions p and q are defined in (3.1).

−π
−π

π

π

λ

θ

(λ∗, θ∗)(λ∗−π, θ∗)

(λ∗,−θ∗)(λ∗−π,−θ∗)

Figure 3.4: The entries of the 2 × 2 GE pivot matrix (black circles), and the
corresponding row and column slices (blue lines) of f̃ containing these values. We
only select pivots of this form during the GE procedure.
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This choice of M comes from the observation that BMC symmetry is entirely

characterized by the following two equalities: f̃(λ∗ − π, θ) = f̃(λ∗,−θ), θ ∈ [−π, π],

and f̃(λ, θ∗) = f̃(λ − π,−θ∗), λ ∈ [−π, π]. To preserve symmetry, a GE step that

alters values along the slices f̃(λ∗−π, θ) and f̃(λ, θ∗) must alter f̃(λ∗, θ) and f̃(λ,−θ∗)

in an identical way. Figure 3.4 shows that the location of the values of M correspond

to the intersections of these row and column slices.

Assuming M in (3.5) is invertible, a GE step with the pivot matrix M is given by

f̃(λ, θ)︸ ︷︷ ︸
ẽ(λ, θ)

←− f̃(λ, θ)−
[
f̃(λ∗ − π, θ) f̃(λ∗, θ)

]
M−1

[
f̃(λ, θ∗)

f̃(λ,−θ∗)

]
︸ ︷︷ ︸

s̃(λ, θ)

. (3.6)

This GE step is analogous to the GE step in (2.11). In Lemma 3.1, we show that (3.6)

zeros out the row and column slices displayed in Figure 3.4.

Lemma 3.1. For a BMC function f̃ , the GE step (3.6) with an invertible pivot matrix

M as in (3.5) gives a residual ẽ(λ, θ) such that ẽ(λ∗, θ) = ẽ(λ∗ − π, θ) = ẽ(λ, θ∗) =

ẽ(λ,−θ∗) = 0.

Proof. Extending the results from [60, Ch. 3 Theorem 1.4] to the continuous setting,

it follows that (3.6) zeros out the column and row slices displayed in Figure 3.4 that

are associated with this choice of M .

We must also show that (3.6) preserves the BMC structure of f̃ .

Lemma 3.2. Given a BMC function f̃ , the update s̃(λ, θ) in (3.6) is also a BMC

function. That is, the GE step in (3.6) preserves BMC structure.

Proof. To show that s̃(θ, λ) has BMC structure, we employ quasimatrices.1

1A quasimatrix A of size [a, b]× n is a matrix with n columns, where each column is a function
defined on the interval [a, b] [69].
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Let J denote the 2 × 2 exchange matrix, so that for a matrix A ∈ C2×n, JA

reverses the rows of A. Let J be the reflection operator, J : s̃(λ, θ)→ s̃(λ,−θ). Now

we use blocks of quasimatrices to rewrite s̃. Using the functions p and q in (3.3), let

Q be the [0, π] × 2 quasimatrix defined as Q =

[
p(λ∗, θ) | q(λ∗, θ)

]
. Let P be the

[0, π]× 2 quasimatrix defined as P =

[
p(λ, θ∗) | q(λ, θ∗)

]
. Then, s̃ in (3.6) can be

written as

s̃ =

[
Q

J (QJ)

]
M−1 [P T JP T

]
. (3.7)

Since M−1 is centrosymmetric, it commutes with J . Using this fact, (3.7) becomes

s̃ =

[
QM−1P T QM−1JP T

J (QM−1JP T ) J (QM−1P T )

]
, (3.8)

which, by the definition of J , is a BMC function.

Lemma 3.2 shows that (3.6) can be used to construct a low rank approximation to

f̃ that preserves BMC symmetry. However, this relies on M being invertible, which

may not always be true. For example, M is singular whenever f̃ is π-periodic in

λ. For this reason, we must replace M in (3.6) with M †ε , the ε-pseudoinverse of M

[30, Sec. 5.5.2], defined below.

Definition 3.4 (ε-pseudoinverse). Let A be an n×n matrix and ε ≥ 0. If A = UΣV ∗

is the singular value decomposition of A with Σ = diag(σ1, . . . , σn) and σk+1 ≤ ε < σk,

then the ε-pseudoinverse of A is given by

A†ε = V Σ†εU∗, Σ†ε = diag
(
σ−11 , . . . , σ−1k , 0, . . . , 0

)
.



35

The matrix M †ε depends on the singular values of M and a tolerance factor, ε.

The choice of ε is determined by a coupling parameter, α, discussed in Section 3.3.

The singular values of M are simply

σ1(M) = max{|p∗ + q∗|, |p∗ − q∗|} and σ2(M) = min{|p∗ + q∗|, |p∗ − q∗|}, (3.9)

where p∗ and q∗ are the entries of M as defined in (3.5).

Replacing M−1 by M †ε in (3.6) results in the GE step

f̃(λ, θ) ←− f̃(λ, θ)−
[
f̃(λ∗ − π, θ) f̃(λ∗, θ)

]
M †ε

[
f̃(λ, θ∗)

f̃(λ,−θ∗)

]
. (3.10)

Lemma 3.2 holds for (3.10) because, like M−1, M †ε is centrosymmetric. If

σ2(M) > ε, thenM is considered well-conditioned andM †ε = M−1. In this case, (3.10)

is equivalent to (3.6) and a rank 2 update is achieved by the GE step. However, if

M is singular or near-singular, then M †ε replaces M−1 and (3.10) produces a rank 1

update. This is discussed further in Section 3.3, where we view GE defined by (3.10)

as a coupled process involving standard GE on two functions related to f̃ .

3.2.1.1 Pivot Selection

The strategy used to select each pivot matrix M is important, as it relates to the

efficiency and convergence of the GE procedure. The 2 × 2 analogue to complete

pivoting proceeds by choosing (λ∗, θ∗) ∈ [0, π]× [0, π] such that σ1(M) is maximized

over all possible choices of M . In practice, however, it is much more efficient to

choose (λ∗, θ∗) over a coarse, discrete grid on [−π, π]× [0, π]. This results in a large,

but not necessarily maximal, value of σ1(M), and GE is robust to these kinds of

compromises [65].
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Using (3.10) and accumulating the rank 2 or rank 1 functions used in the GE

procedure2, a low rank approximation to f̃ can be constructed that is of the form

given in (2.12).

3.2.2 Preserving Structure for BMC-I Functions (the Sphere)

The above GE procedure preserves general BMC symmetry, but it does not preserve

BMC-I structure (see Def. 3.2). Nothing in (3.10) enforces that each rank 1 function

constructed by (3.10) is constant along the lines f̃(λ, 0) and f̃(λ,±π). However, in

the case where f̃(λ, 0) = f̃(λ,±π) = 0, BMC-I structure is preserved in each of the

rank 1 terms since each GE step preserves the zero row and column slices of the

function it is acting on. This suggests a more general strategy. If f̃ is nonzero along

either θ = 0 or θ = ±π, then f̃ is constant along the row slices f̃(λ, 0) and f̃(λ,±π)

for λ ∈ [−π, π]. Choosing the first GE step as

f̃(λ, θ) ←− f̃(λ, θ)− f̃(λ∗, θ) (3.11)

will zero out any row slices of f̃ that are constant in λ. After this initial step,

subsequent updates to f̃ are always zero along θ = 0 and θ = ±π, so BMC-I structure

is always preserved.

A continuous idealization of the BMC-preserving GE process is shown in Fig-

ure 3.5. In practice, the GE procedure is implemented in two phases, and this process

is similar to the method described in [67], except with 2×2 pivots and a pivot selection

method based on maximizing the largest singular value of the pivot matrix. The result

is a low rank approximation to f̃ that can be formulated as in (2.12) (see Section 3.4),

i.e.,

2A rank 2 update can be written as the sum of two rank 1 updates (see Section 3.4).
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Algorithm: Structure-preserving GE on BMC functions

Input: A BMC function f̃ and a coupling parameter 0 ≤ α ≤ 1.

Output: A structure-preserving low rank approximation f̃k to f̃ .

Set f̃0 = 0 and ẽ0 = f̃ .

for k = 1, 2, 3, . . . ,

Find (λk, θk) such that M =

[
p∗ q∗

q∗ p∗

]
, where p∗ = ẽk−1(λk−1 − π, θk−1) and

q∗ = ẽk−1(λk−1, θk−1), has maximal σ1(M) (see (3.9)).

Set ε = ασ1(M).

ẽk = ẽk−1 −
[
ẽk−1(λk − π, θ) ẽk−1(λk, θ)

]
M †ε

[
ẽk−1(λ, θk)

ẽk−1(λ,−θk)

]
.

f̃k = f̃k−1 −
[
ẽk−1(λk − π, θ) ẽk−1(λk, θ)

]
M †ε

[
ẽk−1(λ, θk)

ẽk−1(λ,−θk)

]
.

end

Figure 3.5: A continuous idealization of our structure-preserving GE procedure on
BMC functions. In practice, we use a discretization of this procedure and terminate
it after a finite number of steps.

f̃(λ, θ) ≈
K∑
j=1

djcj(θ)rj(λ), (λ, θ) ∈ [−π, π]2. (3.12)

We represent each of the cj(θ) and rj(λ) functions in (3.12) using a Fourier expansion.

This process, including the retrieval of the Fourier coefficients for each cj(θ) and rj(λ),

is achieved in O(K3 +K2(m+n) +K(m logm+n log n)) operations (see [67]), where

K is the numerical rank of the function, and m and n are the maximum Fourier

modes required to resolve the functions cj(θ) and rj(λ), respectively, to approximately

machine precision.

The example in Figure 3.6 illustrates the form of approximation given by (3.12).

Each cj(θ) and rj(λ) define a longitudinal and latitudinal “slice” of f̃ , respectively.

Together, these slices form a sparse collection of samples from the full tensor product
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grid that have been adaptively selected to approximate f̃ to machine epsilon. This

collection is referred to as the “skeleton” of f̃ . As illustrated in Figure 3.6, this

method does not oversample the function near the poles.

Figure 3.6: Left: The function f(x, y, z) = cos(xz−sin y) on the unit sphere. Right:
The “skeleton” used to approximate f that is found via the BMC structure-preserving
GE procedure. The blue dots are the entries of the 2× 2 pivot matrices used by GE.
The GE procedure only samples f along the blue lines. The underlying tensor grid
(in gray) shows the sampling grid required without low rank techniques, which cluster
near the poles.

3.2.3 Preserving Structure for BMC-II Functions (the Disk)

A function g on the unit disk can be associated with the BMC-II function g̃(θ, ρ)

via (3.4). Since the GE step (3.10) preserves general BMC symmetry, it is immedi-

ately applicable to g̃. However, BMC-II symmetry requires that g̃ is constant along

ρ = 0, and this feature of g̃ is not preserved by (3.10). BMC-II symmetry is preserved

whenever g̃(θ, 0) = 0, so if g̃(θ, 0) 6= 0, then we choose the first GE step as

g̃(θ, ρ) ←− g̃(θ, ρ)− g̃(θ∗, ρ), (3.13)

where θ∗ ∈ [−π, π]. After this initial step is applied, the row slice g̃(θ, 0) is zeroed out

and subsequently, every update function in (3.10) has BMC-II symmetry. Note that

this technique is identical to the method applied for preserving BMC-I structure.
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Figure 3.7: Left: The function g(θ, ρ) = − cos((sin(πρ) cos(θ) + sin(2πρ) sin(θ))/4)
on the unit disk. Right: The adaptively selected skeleton for g̃. The blue dots are the
pivot locations selected via GE. The GE procedure only samples g along the blue
lines. The underlying tensor product grid (in gray) shows the sample points required
to approximate g to approximately machine precision without the GE procedure
applied to the DFS method. The oversampling of the tensor grid, in contrast to the
low rank skeleton, can be seen.

The same GE procedure described for BMC-I functions is therefore applicable to

BMC-II functions, but the implementational details and the subsequent algorithms

used for computations involving the approximants are different. This is because

BMC-II functions associated with the disk are not periodic in ρ. Selecting the adaptive

skeleton for g̃ via the GE procedure, a low rank approximation to g̃ of the form

in (2.12) is given by

g̃(θ, ρ) ≈
K∑
j=1

djcj(ρ)rj(θ), (θ, ρ) ∈ [−π, π]× [−1, 1]. (3.14)

Here, a Fourier expansion is used to represent each of the rj(θ) functions in (3.14), and

a Chebyshev expansion is used for each cj(ρ) function. Figure 3.7 displays the skeleton

constructed for a function on the disk. Each cj(ρ) function forms a radial slice, and

each rj(θ) forms a circular slice. One can see in Figure 3.7 that unlike a tensor

product representation, the approximant constructed via GE does not oversample
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the function near the origin.

3.3 Structure-preserving Gaussian Elimination as a Coupled

Procedure

An alternative interpretation of structure-preserving GE views the process as a cou-

pled procedure involving two standard GE algorithms. This interpretation can be

used to state the convergence properties of the GE procedure (see Section 3.5), and

it also reveals that the approximants constructed via BMC structure-preserving GE

possess important parity properties inherent to functions in spherical and polar ge-

ometries (see Section 3.4). For the sake of exposition, we consider the BMC-I function

f̃ defined in (3.1) and associated with the sphere throughout this section. However,

these results have equivalent interpretations for BMC-II functions associated with the

disk.

Observe that f̃ in (3.1) can be decomposed into a sum of two BMC functions: let

f+ = p+ q and f – = p− q, where p and q are defined in (3.1). Then,

f̃ =
1

2

[
f+ f+

flip(f+) flip(f+)

]
︸ ︷︷ ︸

= f̃+

+
1

2

[
f – −f –

−flip(f –) flip(f –)

]
︸ ︷︷ ︸

= f̃ –

. (3.15)

Consider the action of the GE step given in (3.10). Let M be the first 2 × 2 pivot

matrix defined in (3.5). Then, M †ε can be expressed as

M †ε =

[
1√
2

1√
2

1√
2
− 1√

2

][
m+

m–

][
1√
2

1√
2

1√
2
− 1√

2

]
, (3.16)

where the possible values of m+ and m– are given by
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(m+,m–) =


(1/(p∗ + q∗), 0), if |p∗ − q∗| < α|p∗ + q∗|,
(0, 1/(p∗ − q∗)), if |p∗ + q∗| < α|p∗ − q∗|,
(1/(p∗ + q∗), 1/(p∗ − q∗)), otherwise.

(3.17)

Here, α = ε/σ1(M) = ε/max{|p∗ + q∗|, |p∗ − q∗|}. We can use (3.16) to re-write the

GE step in (3.10) as

f̃(λ, θ) ←− f̃(λ, θ)− m+

2

(
f̃(λ∗ − π, θ) + f̃(λ∗, θ)

)(
f̃(λ, θ∗) + f̃(λ,−θ∗)

)
− m–

2

(
f̃(λ∗ − π, θ)− f̃(λ∗, θ)

)(
f̃(λ, θ∗)− f̃(λ,−θ∗)

)
.

(3.18)

Using the definitions of f̃+ and f̃ –, (3.18) can then be written as

f̃(λ, θ) ←− 1

2
(f̃+(λ, θ)−m+f̃+(λ∗, θ)f̃+(λ, θ∗)) +

1

2
(f̃ –(λ, θ)−m–f̃ –(λ∗, θ)f̃ –(λ, θ∗)),

(3.19)

which suggests that the step is equivalent to two coupled GE steps on the functions

f̃+ and f̃ –. This is verified by noting that p∗+q∗ = f̃+(λ∗, θ∗) and p∗−q∗ = f̃ –(λ∗, θ∗)

in the definition of m+ and m– in the third case of (3.17).

The coupling of the two GE steps is through the parameter α in (3.17); for this

reason, we call α the coupling parameter. If either of the first two cases of (3.17)

is chosen, then GE with complete pivoting is performed on only one term in (3.19),

resulting in a rank 1 update to f̃ . In the third case of (3.17), M †ε = M−1, and a

rank 2 update is achieved. Performing as many rank 2 updates as possible reduces the

overall number of pivot searches required by the GE procedure. For this reason, the

choice of α is important. Too small a value of α may allow the use of M−1 when M is

ill–conditioned, but choosing α too close to 1 hampers the efficiency of the procedure.

In practice, we choose α = 1/100.

One may wonder if it makes sense to choose α = 1, so the GE steps in (3.19)

on f̃+ and f̃ – are fully decoupled. Then, the structure-preserving GE procedure is
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equivalent to applying GE with complete pivoting to f̃+ and f̃ – independently. This

is problematic because the rank 1 terms attained from applying GE independently to

f̃+ and f̃ – cannot then be properly ordered when constructing a low rank approximant

of f̃ . By selecting 0 < α < 1, the GE steps are coupled, the rank 1 terms are selected

in an ordered way, and a single GE step can achieve a rank 2 update, which improves

efficiency by reducing the number of required pivot searches.

The decomposition of f̃ in (3.19) is useful in a variety of contexts. In the next

section, we show how it can be used to explicitly express parity properties possessed

by continuous functions on the sphere and disk.

3.4 Parity Properties for BMC Approximants

Functions defined in polar and spherical geometries possess parity properties that can

be used in approximation schemes to satisfy pole conditions [10, 57, 82]. Typically,

these properties are used to enforce symmetry on the 2D Fourier or 2D Fourier–

Chebyshev coefficients of functions f̃ in (3.1) or g̃ in (3.4), respectively. Using the

more general concept of BMC symmetry, we can enforce these properties directly on

the values of f̃ and g̃ instead of the coefficients, and this is the premise BMC structure-

preserving GE operates on. In this section, we show that low rank approximations

to f̃ and g̃ constructed via BMC structure-preserving GE (see Figure 3.5) satisfy

the parity properties associated with their Fourier expansions. These results can

be used to simplify algorithmic procedures, such as integration (see Sections 4.2.3

and 4.3.3), and the resulting expressions also clarify why our approximants are stable

for differentiation (see Sections 4.2.4 and 4.3.4).
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Functions on the Sphere

Consider the truncated Fourier expansion of a BMC-I function f̃ derived from the

sphere via (3.1), written as

f̃(λ, θ) ≈
n/2−1∑
k=−n/2

ψk(θ)e
ikλ (λ, θ) ∈ [−π, π]2, (3.20)

and note that ψk(θ) can also be expanded as Fourier series. In [82] and [49], it is shown

that the following properties must hold for any approximation to f̃ to be continuous

and differentiable on the sphere:

(i) k is even =⇒ ψk(θ) is an even function (i.e., ψk(θ) has only cosine modes),

(ii) k is odd =⇒ ψk(θ) is an odd function (i.e., ψk(θ) has only sine modes),

(iii) k 6= 0 =⇒ ψk(0) = ψk(±π) = 0.

We now show that these properties are inherent to approximants constructed via

structure-preserving GE. The function f̃ can be written as the sum of two BMC

functions via (3.15), i.e. f̃ = 1
2
f+ + 1

2
f –. Using (3.19), the low rank approximant to

f̃ constructed by the GE procedure can be written as

f̃(λ, θ) ≈
K∑
j=1

djcj(θ)rj(λ) =
K

+∑
j=1

d+

j c
+

j (θ)r+j (λ) +
K

–∑
j=1

d–

jc
–

j(θ)r
–

j(λ), (3.21)

where K+ +K– = K, and {dj}Kj=1 are determined by the eigenvalues of the pseudoin-

verse of the pivot matrices. It is evident in (3.15) that f̃+ is an even function in θ

and is π-periodic in λ, and that f̃ – is an odd function in θ and π-antiperiodic in λ3.

It follows that the functions c+j (θ) and r+j (λ) for 1 ≤ j ≤ K+ are even and π-periodic,

respectively, while c–j(θ) and r–j(λ) for 1 ≤ j ≤ K− are odd and π-antiperiodic,

3A function f is said to be π-antiperiodic if f(ξ + π) = −f(ξ).



44

respectively. This implies that the Fourier expansions of each of these terms will

naturally satisfy parity properties (i) and (ii), since π-periodic functions have only

even Fourier modes, and π-antiperiodic functions have only odd Fourier modes.

If f̃ is non-zero at the poles and (3.11) is applied in the first step of the GE

procedure, then c+1 (θ) = f̃(λ∗, θ), r+1 (λ) = 1, and d+

1 = 1. This ensures that for

2 ≤ j ≤ K+, c+j (0) = c+(±π) = 0, enforcing that parity property (iii) holds for the

approximant.

Functions on the Disk

Functions on the disk possess similar parity properties. For g̃ as in (3.4), the Fourier

expansion of g̃ given in (2.16) must satisfy the following properties:

i k is even =⇒ φk(ρ) is an even function,

ii k is odd =⇒ φk(ρ) is odd function,

iii k 6= 0 =⇒ φk(0) = 0.

Applying the results from Section 3.3, g̃ can be written as the sum of two BMC

functions, so that g̃ = g̃+ + g̃–, where g̃+ is an even function in ρ and π-periodic in

θ. Likewise, g̃– is an odd function in ρ and π-antiperiodic in θ, implying that parity

properties (i) and (ii) are inherent to (3.15) applied to g̃. Furthermore, the low rank

approximation to g̃ can be re-written as

g̃(θ, ρ) ≈
K∑
j=1

djcj(ρ)rj(θ) =
K

+∑
j=1

d+

j c
+

j (ρ)r+j (θ) +
K

–∑
j=1

d–

jc
–

j(ρ)r–j(θ). (3.22)

If g̃ is non-zero along g̃(θ, 0), the first step of the GE procedure is given by (3.11).

This chooses c+1 (ρ) = g̃(θ∗, ρ), r+1 (θ) = 1, and d+

1 = 1, so that for 2 ≤ j ≤ K+,
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cj(0) = 0. In this way, parity property (iii) is preserved in the decomposition given

by (3.22).

Note that in a more generalized setting, a BMC function f̃(ξ, η) that is not

necessarily associated with the sphere or disk will have the property that f̃+ is even

in η and symmetric in ξ, and f̃− is odd in η and anti-symmetric in ξ.

3.5 Convergence and Recovery Properties

In this section, we present several theorems describing the convergence behavior of

approximants constructed via the structure-preserving GE procedure. Since these

results apply to BMC functions associated with either the sphere or the disk, we

consider a general BMC function f̃(ξ, η) with (ξ, η) ∈ [−a, a] × [−b, b]. Our first

result is for f̃ that are of finite rank K.

Theorem 3.1 (Exact recovery for functions of finite rank). If f̃ : [−a, a]× [−b, b]→

C is a rank K BMC function, then the structure-preserving GE procedure exactly

recovers f̃ in K or less steps.

Proof. Let (ξ∗, η∗) be the pivot locations selected for the first GE step, and let M †ε be

the corresponding 2× 2 pivot matrix of rank k (k = 1 or k = 2). By the generalized

Guttman rank additivity formula [15],

rank(f̃) = rank(M †ε) + rank

(
f̃ −

[
f̃(ξ∗ − a, ·) f̃(ξ∗, ·)

]
M †ε

[
f̃(·, η∗)
f̃(·,−η∗)

])
,

where rank(·) denotes the rank of a function or matrix. Thus, the rank of the residual

produced by each GE step is rank(f̃)-k. After at most K steps, the residual is of rank

0, and this can only be true if the residual is the zero function. The GE procedure
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terminates at this point, so a rank K function has been constructed, and it is exactly

equal to f̃ .

On the sphere, a band-limited function is a function that can be expressed as a

finite series of spherical harmonics. Each spherical harmonic is a rank 1 function [47,

Sec. 14.30], so Theorem 3.1 implies that the GE procedure exactly recovers band-

limited functions on the sphere in finitely many steps.

A continuous, band-limited function on the disk is any function such that its

Fourier transform is compactly supported. Since its Fourier expansion is finite, the

function is of finite rank. It follows that after a finite number of steps, the GE

procedure exactly recovers continuous, band-limited functions on the disk.

What can we say about convergence if f̃ is of infinite rank? If f̃ is sufficiently

analytic, then it can be shown that the approximants to f̃ constructed via structure-

preserving GE converge to f̃ at a geometric rate. Proving this requires an analysis of

the intermediate growth factor associated with the GE procedure:

Definition 3.5 (Intermediate growth factor). For any given GE strategy performed

on a bivariate function f̃(ξ, η), the intermediate growth factor γk(f̃) is defined as the

ratio between the absolute maximum of f̃ and the absolute maximum of the residual

obtained after a rank k update. Formally,

γk(f̃) =
maxξ,η |ẽk(ξ, η)|

max |f̃(ξ, η)|
,

where ẽk is the residual after k steps of the GE procedure.

In the following lemma, an upper bound is given for the intermediate growth

factor after a single step of the structure–preserving GE procedure.
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Lemma 3.3. Let f̃(ξ, η), (ξ, η) ∈ [−a, a] × [−b, b], be a BMC function. After a

single step, the intermediate growth factor for the structure–preserving GE procedure

satisfies γ1(f̃) ≤ max{3,
√

1 + 4/α}, where α is the coupling parameter in (3.17).

Proof. Consider the first GE step. Let M be the selected 2×2 pivot matrix as in (3.5)

that maximizes the choice of σ1(M) in (3.9). Observe that σ1(M) ≥ ||f̃ ||∞, where

||f̃ ||∞ is the absolute maximum of f̃ on [−a, a] × [−b, b]. There are two cases to

consider:

Case 1: σ2(M) < ασ1(M). Here M †ε in (3.10) with ε = ασ1(M) is of rank 1.

Using the spectral decomposition of M †ε in (3.16) and the fact that σ1(M) ≥ ‖f̃‖∞,

it follows that∥∥∥∥∥f̃ − [f̃(ξ∗ − a, ·) f̃(ξ∗, ·)
]
M †ε

[
f̃(·, η∗)
f̃(·,−η∗)

]∥∥∥∥∥
∞

≤ ‖f̃‖∞ +
2‖f̃‖2∞
σ1(M)

≤ 3‖f̃‖∞.

Thus, the growth factor in this case is at most 3.

Case 2: σ2(M) ≥ ασ1(M). Here, M †ε = M−1. Let ‖M−1‖max denote the maxi-

mum absolute entry of M−1. Then,

‖M−1‖max ≤
‖f̃‖∞

det(M)
=

‖f̃‖∞
σ1(M)σ2(M)

≤ ‖f̃‖∞
ασ1(M)2

≤ 1

α‖f̃‖∞
.

It follows that∥∥∥∥∥f̃ − [f̃(ξ∗ − a, ·) f̃(ξ∗, ·)
]
M †ε

[
f̃(·, η∗)
f̃(·,−η∗)

]∥∥∥∥∥
∞

≤ ‖f̃‖∞ +
4‖f̃‖∞
α

≤
(

1 +
4

α

)
‖f̃‖∞.

In this case, the growth factor is ≤
√

1 + 4/α because the GE update is of rank 2.

Since the intermediate growth factor is bounded for each step of GE, convergence

of the GE procedure can be proven for functions f̃ that satisfy the following property:

For any η∗ ∈ [−b, b], f̃(·, η∗) is an analytic function in a sufficiently large region of
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the complex plane containing [−a, a]. We formalize this idea using the concept of a

stadium.

Definition 3.6 (Stadium). The stadium Sβ with radius β > 0 is the region in the

complex plane consisting of all numbers lying at a distance ≤ β from an interval [c, d],

i.e.,

Sβ =

{
z ∈ C : inf

x∈[c,d]
|x− z| ≤ β

}
.

We now prove that for sufficiently analytic functions, the GE procedure converges

at a geometric rate. In the following theorem, the roles of ξ and η can be exchanged.

Theorem 3.2. Let f̃ : [−a, a] × [−b, b] → C be a BMC function such that f̃(ξ, ·)

is continuous for any ξ ∈ [−a, a] and f̃(·, η) is analytic and uniformly bounded in a

stadium Sβ of radius β = max(3, 1 + α−1)κa, κ > 1, for any η ∈ [−b, b], where α is

the coupling parameter described in (3.17). Then, there exists a constant c > 0 such

that

||f̃ − f̃k||∞ = ||ẽk||∞ ≤ cµ−k,

where µ = min{κ, α−1} and f̃k is the approximant constructed after k steps of the

structure-preserving GE procedure. In other words, the GE procedure constructs rank

k approximants that converge to f̃ at a geometric rate.

Proof. Since ẽk is a BMC function for k ≥ 0, ẽk can be decomposed into the sum of

an even-symmetric and odd-antisymmetric function, i.e., ẽk = ẽ+k + ẽ–k, as discussed in

Section 3.4. From Section 3.3, we know that the structure-preserving GE procedure

in Figure 3.5 can be regarded as two coupled GE procedures on the even-symmetric

and odd-antisymmetric parts of ẽk.
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Let µ = min{κ, α−1}, where 0 < α < 1 is the coupling parameter described

in (3.17), and κ > 1. Choose c so that ||ẽ+0 ||∞ ≤ c/2 and ||ẽ−0 ||∞ ≤ c/2. We will show

that for all k, ||ek||∞ ≤ cµ−k.

We proceed by induction. For k = 0, observe that max{||ẽ+0 ||∞, ||ẽ–0||∞} ≤ (c/2)µ0.

Now suppose that at step k, the following induction hypothesis holds:

max{||ẽ+k ||∞, ||ẽ–k||∞} ≤ (c/2)µ−k.

Consider the next structure-preserving GE step. This step occurs in one of three

cases described in (3.17). In each case, we will show that the induction hypothesis

continues to hold at the k + 1 step.

Case 1: In this case, ||ẽ–k||∞ < α||ẽ+k ||∞, and only ẽ+k is updated in the k + 1

step of structure-preserving GE (see Section 3.3). This step is therefore equivalent

to performing a standard GE step as in (2.11) on ẽ+k , and letting ẽ–k+1 = ẽ–k. In the

proof of Theorem 8.1 in [69], it is shown that after applying (2.11) to ẽ+k , which is a

function that in at least one variable is analytically continuable to the region Sβ, it

must be true that

||ẽ+k+1||∞ ≤ κ−1||ẽ+k ||∞.

It is also true that

||ẽ−k+1||∞ = ||ẽ–k||∞ < α||ẽ+k ||∞.

Using the definition of µ, it follows that

max{||ẽ+k+1||∞, ||ẽ−k+1||∞} ≤ µ−1 max{||ẽ+k ||∞, ||ẽ−k ||∞}.

Applying the induction hypothesis, we find that

max{||ẽ+k+1||∞, ||ẽ–k+1||∞} ≤ (c/2)µ−(k+1).
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Case 2: In this case, ||ẽ+k ||∞ < α||ẽ–k||∞, and only ẽ–k is updated by the k + 1

structure-preserving GE step. Applying the same reasoning used in Case 1, we

conclude that

max{||ẽ+k+1||∞, ||ẽ–k+1||∞} ≤ (c/2)µ−(k+1).

Case 3: In this case, M †ε = M−1, so the k+ 1 BMC structure-preserving GE step

is of the form given in (3.6). As shown in Section 3.3, this GE step is equivalent to

performing coupled GE steps with scalar pivots 1/m+ and 1/m– from (3.17) on ẽ+

and ẽ–, respectively. Without loss of generality, suppose that |m–| > |m+|. Then, a

standard GE step as in (2.11) is applied to ẽ+k , and a GE step with a nonstandard

pivoting strategy is performed on ẽ–k. The only difference between these GE steps is

that in the latter case, the selected pivot may not be the maximum value of ẽ–k.

For ẽ+k , we apply Theorem 8.1 in [69], finding that

||ẽ+k+1||∞ ≤ κ−1||ẽ+k ||∞.

Theorem 8.1 in [69] describes convergence for GE with complete pivoting, but

it is not difficult to see that an analogous result holds for any GE scheme with an

intermediate growth factor that is appropriately bounded at each step. We observe

that Case 2 of Lemma 3.3 gives a bound of
√

1 + 4/α for the intermediate growth

factor associated with the coupled, structure-preserving GE step, but we require a

bound on the intermediate growth factor for the individual, nonstandard GE step

being applied to ẽ–k in (3.19) .

In this instance, the pivot is 1/m–. Using the fact that 1/|m–| = σ2(M), and

σ2(M) ≥ ασ1(M) > α||ẽ–k||∞, it is straightforward to show that the intermediate

growth factor for this nonstandard GE step on ẽ–k is bounded by (1 + α−1).
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We use this bound in the same argument as is applied in the proof of Theorem

8.1 in [69] to conclude that

||ẽ−k+1||∞ ≤ κ−1||ẽ–k||∞.

It follows from the definition of µ and the induction hypothesis that

max{||ẽ+k+1||∞, ||ẽ–k+1||∞} ≤ (c/2)µ−(k+1).

We have shown that the induction hypothesis continues to hold in each case for

the k + 1 step. By induction, for all k ≥ 0,

max{||ẽ+k ||∞, ||ẽ–k||∞} ≤ (c/2)µ−k.

Applying the triangle inequality, i.e. ||ẽk||∞ ≤ ||ẽ+k ||∞ + ||ẽ–k||∞, it follows that for

all k ≥ 0, ||ẽk||∞ ≤ cµ−k.

While convergence can be proven for highly analytic functions, we observe in

practice that convergence occurs even for functions that are only a few times differ-

entiable, and it occurs at rates that are near-optimal. We discuss the meaning of this

statement in the next section.

3.6 Near-optimality

If a function f̃(ξ, η) is Lipschitz continuous with respect to both variables for

(ξ, η) ∈ [−a, a] × [−b, b], then the best rank K approximation to f̃ in the standard

L2 norm is given by the Karhunen–Loève expansion, also known as the singular value

decomposition (SVD) of f̃ (see Section 2.2.1).
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In Appendix A.2, it is shown that the SVD preserves BMC structure4. Unfortu-

nately, the high cost of computing the SVD makes this an untenable approach for

constructing low rank approximants to BMC functions. Nonetheless, the SVD gives
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Figure 3.8: A comparison of low rank approximations to the functions in (3.23)
computed using the SVD and the iterative GE procedure. The L2 error is plotted
against the rank of the approximants to φ1 and φ2. The L2 error given by the
SVD approximants are optimal and we observe that that the low rank approximants
constructed by the GE procedure are near-optimal.

optimal low rank approximants and therefore provides a way to check the quality of

the low rank approximants constructed by our GE procedure.

As an example, we examine the following two BMC-II functions defined on the

disk:

φ1(θ, ρ) = e−(cos(11ρ sin θ)+sin(ρ cos θ))
2

,

φ2(θ, ρ) = (1− ω(θ, ρ))6+
(
35(ω(θ, ρ))2 + 18ω(θ, ρ) + 3

)
,

(3.23)

where ω(θ, ρ) =
√

(ρ cos θ − 1/5)2 + (ρ sin θ − 1/5)2 and ζ+ = max{ζ, 0}. Figure 3.8

displays the L2 error over [−π, π]× [−1, 1] for rank K approximations constructed via

the SVD and the GE procedure. The error given by the SVD behaves in accordance

4The SVD preserves general BMC structure, but it does not necessarily preserve BMC-I or
BMC-II structure.
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with known theoretical results, decaying geometrically for the function φ1 and at an

algebraic rate for φ2 [64]. In practice, it is observed that the GE procedure developed

in this chapter efficiently and reliably constructs near-best low rank approximants to

BMC functions that have some degree of smoothness.

We have shown that the BMC structure-preserving GE procedure is an efficient,

near-optimal method for constructing approximants to functions in polar and spheri-

cal geometries. In the next chapter, we develop algorithms for computing with these

approximants.
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CHAPTER 4

NUMERICAL COMPUTATION IN SPHERICAL AND

POLAR GEOMETRIES

4.1 Software

Chapter 3 describes an effective GE procedure for constructing approximants to

functions on the sphere and disk. We have implemented this procedure in the

Spherefun and Diskfun software programs1, which are integrated within the Chebfun

software program [21]. The underlying algorithms in these programs have been

designed to exploit the low rank form of function approximants. In this way, many

operations, such as integration and differentiation, can be performed as essentially 1D

procedures involving Fourier or Chebyshev expansions. This is especially convenient

within Chebfun, where 1D algorithms using these expansions are highly optimized.

Our software is adaptive, efficient, and also intuitive to use. Investigators can easily

compute with and visualize functions on the sphere and disk using familiar MATLAB

commands, without concern for the underlying numerical procedures.

In Chebfun, functions in spherical and polar geometries are accessed through

the creation of spherefun and diskfun objects, respectively. Below, we display the

MATLAB code used to represent the function f(θ, ρ) = sin
(
2ρ sin θ− .4

)
as a diskfun

1After our software was developed and posted publicly, another software system named “diskfun”
was released in the Approxfun software system written in Julia. It is not related to this work.
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object:

g = diskfun(@(t,r) sin(2*r.*sin(t)-.4), ’polar’)

g =

diskfun object:

domain rank vertical scale

unit disk 8 1.4

The printout provides the numerical rank of the function, discussed in Section 2.2,

and it also displays the vertical scale, an approximation of the absolute maximum

value of g.

The default setting of Diskfun assumes that functions are supplied in Cartesian

coordinates. However, diskfun objects can be constructed from function handles

in polar coordinates by adding the flag ‘polar’ to the construction command.

Similarly, spherefun objects can be constructed from function handles in either polar

or Cartesian coordinates2 (see examples in Section 4.2).

Once a diskfun or spherefun object is created, users have access to a large number

of algorithms tailored to functions defined on the disk or sphere via overloaded

MATLAB commands. For example, integration is performed by the sum2 command,

and differentiation is performed by diff.

In the following sections, we describe several of the algorithms used for computing

with functions on the sphere and disk, and also provide examples showing how these

procedures are accessed in Chebfun. More examples can be found online at

www.chebfun.org/examples.

2In the case of the sphere, there is no need to add a flag since the number of variables in the
function handle implies the coordinate system.
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4.2 Numerical Computations with Functions on the Sphere

Here, we discuss several operations for computing with functions on the sphere, which

are all available as part of Spherefun. In the discussion, we assume that we are working

with a smooth function on the sphere, f , that has been extended to a BMC function,

f̃ , using the DFS method (see (3.1)). We assume f̃ is represented to approximately

machine precision by an approximant of the form (3.12) constructed via the GE

procedure in Figure 3.5. The functions cj(θ) and rj(θ) in (3.12) are 2π-periodic, and

we represent them in Spherefun with Fourier expansions, i.e.,

cj(θ) =

m/2−1∑
k=−m/2

ajke
ikθ, rj(λ) =

n/2−1∑
k=−n/2

bjke
ikλ, (4.1)

where m and n are even integers. We could go further and split the functions cj and

rj into the functions c+j , r+j , c–j, and r–j in (3.21). In Spherefun, this can be done with

the partition command. Then, the Fourier coefficients of these functions would

satisfy the parity properties discussed in Section 3.4.

In principle, the number of Fourier modes in the expansions for cj(θ) and rj(λ)

in (4.1) could depend on j. Here, we use the same number of modes, m, for each

cj(θ), and n for each rj(λ). This allows operations on spherefun objects to be more

computationally efficient as the underlying code can be vectorized.

4.2.1 Pointwise Evaluation

The evaluation of f(x, y, z) on the surface of the sphere, i.e., when

x2 + y2 + z2 = 1, is computationally very efficient. This immediately follows from the

low rank representation for f̃ since
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f(x, y, z) = f̃(λ, θ) ≈
K∑
j=1

djcj(θ)rj(λ),

where λ = tan−1(y/x) and θ = cos−1(z/(x2 + y2)1/2). Thus, f(x, y, z) can be

calculated by evaluating 2K 1D Fourier expansions (4.1) using Horner’s algorithm,

which requires a total of O(K(n+m)) operations [81].

The Spherefun software allows users to evaluate using either Cartesian or spherical

coordinates. In the former case, points that do not exactly satisfy x2 + y2 + z2 = 1

are projected to the unit sphere in the radial direction.

4.2.2 Computation of Fourier Coefficients

The DFS method and our low rank approximant for f̃ means that the FFT is

applicable when computing with f̃ . Here, we assume that the Fourier coefficients for

cj and rj in (4.1) are unknown. In full tensor-product form, the bi-periodic BMC-I

function can be approximated using a 2D Fourier expansion. That is,

f̃(λ, θ) ≈
m/2−1∑
j=−m/2

n/2−1∑
k=−n/2

Xjke
ijθeikλ. (4.2)

The m × n matrix X of Fourier coefficients can be directly computed by sampling

f̃ on a 2D uniform tensor-product grid and then applying the 2D FFT, costing

O(mn log(mn)) operations. However, using the low rank structure of f̃ , we can

compute a low rank approximation of X in O(K(m logm+ n log n)) operations.

After sampling f̃ along the adaptively selected skeleton from Section 3.2, the

coefficients for cj and rj in (4.1) are computed in O(K3 +K2(m+ n) +K(m logm+

n log n)) operations. This is achieved by performing GE on the skeleton [68] to obtain

the values of cj and rj on a uniform grid, and then using the FFT. The matrix X will

be calculated in low rank form:
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X = ADBT , (4.3)

where A is an m×K matrix and B is an n×K matrix, so that the jth column of A

and B is the vector of Fourier coefficients for cj and rj, respectively. The matrix D is

a K ×K diagonal matrix containing dj. From the low rank format in (4.3), one can

calculate the entries of X by matrix multiplication in O(Kmn) operations. However,

many operations, such as integration and differentiation, only require the low rank

form of X.

The inverse operation is to sample f̃ on an m×n uniform grid over [−π, π]×[−π, π]

given its Fourier coefficient matrix. If X is given in low rank form, then this can be

achieved in O(K(m logm+ n log n)) operations via the inverse FFT.

These two procedures are critical to Spherefun. As exemplified in this section, we

rely on a coefficient-based representation of f̃ for several algorithms and in fact store

f̃ in this way, and yet we also regularly require values of f̃ . The Fourier coefficients

of a spherefun object are computed by the coeffs2 command, and the values of the

function at a uniform grid [π, π]× [0, π] are computed by the command sample.

4.2.3 Integration

The definite integral of a function f(x, y, z) over the sphere can be efficiently computed

in Spherefun as follows:∫
S2
f(x, y, z)dx dy dz =

∫ π

0

∫ π

−π
f̃(λ, θ) sin θ dλ dθ

≈
K∑
j=1

dj

∫ π

0

cj(θ) sin θ dθ

∫ π

−π
rj(λ) dλ.

Hence, the approximation of the integral of f over the sphere reduces to 2K one-

dimensional integrals involving 2π-periodic functions.
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Due to the orthogonality of the Fourier basis, the integrals of rj(λ) are given as∫ π

−π
rj(λ) dλ = 2bj0, 1 ≤ j ≤ K,

where bj0 is the zeroth Fourier coefficient of rj in (4.1). The integrals of cj(θ) are over

half the period, so the expressions are a bit more complicated. Using symmetry and

orthogonality,

∫ π

0

cj(θ) sin θ dθ =

m/2−1∑
k=−m/2

wka
j
k, 1 ≤ j ≤ K, (4.4)

where w±1 = 0 and wk = (1 + eiπk)/(1− k2) for −m/2 ≤ k ≤ m/2− 1 and k 6= ±1.

Here, ajk are the Fourier coefficients for cj in (4.1).

Therefore, we can compute the surface integral of f(x, y, z) over the sphere in

O(Km) operations. This algorithm is used in the sum2 command of spherefun. For

example, the function f(x, y, z) = 1 + x + y2 + x2y + x4 + y5 + (xyz)2 has a surface

integral of 216π/35 and can be calculated in spherefun as follows:

f = spherefun(@(x,y,z) 1+x+y.ˆ2+x.ˆ2.*y+x.ˆ4+y.ˆ5+...

(x.*y.*z).ˆ2);

sum2(f)

ans =

19.388114662154155

The error is computed as abs(sum2(f)-216*pi/35) and is given by 3.553×10−15.

We can further reduce the cost of this computation by applying results associated

with the parity properties in Section (3.4). The odd-antiperiodic functions in the

decomposition (3.21) will not contribute to the integral, and can therefore be excluded

from the computation.
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4.2.4 Differentiation

Differentiation of a function on the sphere with respect to spherical coordinates (λ, θ)

can lead to singularities at the poles, even for smooth functions [61]. For example,

consider the simple function f(λ, θ) = cos θ. The θ-derivative of this function is

sin θ, which is continuous on the sphere but not smooth at the poles, as it does not

satisfy the parity properties in Section 3.4. Fortunately, one is typically interested in

the derivatives that arise in applications such as vector calculus operations involving

the gradient, divergence, curl, or Laplacian. All of these operators can be expressed

in terms of the components of the surface gradient with respect to the Cartesian

coordinate system [24].

Let ex, ey, and ez denote the unit vectors in the x, y, and z directions, respectively,

and ∇S denote the surface gradient on the sphere in Cartesian coordinates. From the

chain rule, we can derive the Cartesian components of ∇S as

ex · ∇S :=
∂t

∂x
= −sinλ

sin θ

∂

∂λ
+ cosλ cos θ

∂

∂θ
, (4.5)

ey · ∇S :=
∂t

∂y
=

cosλ

sin θ

∂

∂λ
+ sinλ cos θ

∂

∂θ
, (4.6)

ez · ∇S :=
∂t

∂z
= sin θ

∂

∂θ
. (4.7)

Here, the superscript ‘t’ indicates that these operators are tangential gradient oper-

ations. The result of applying any of these operators to a smooth function on the

sphere is a smooth function on the sphere [61]. For example, applying ∂t/∂x to

cos θ gives − cosλ sin θ cos θ, which in Cartesian coordinates is −xz restricted to the

sphere.

As with integration, our low rank approximation for f̃ can be exploited to compute

(4.5)–(4.7) efficiently. For example, using (4.1), we have
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∂tf̃

∂x
= −sinλ

sin θ

∂f̃

∂λ
+ cosλ cos θ

∂f̃

∂θ

≈ −
K∑
j=1

(
cj(θ)

sin θ

)(
sinλ

∂rj(λ)

∂λ

)
+

K∑
j=1

(
cos θ

∂cj(θ)

∂θ

)(
cosλ rj(λ)

)
.

(4.8)

Although it appears that an artificial singularity has been introduced in (4.8)

with the division by sin θ, this is not the case. Suppose that f̃ is nonzero at θ = 0

or θ = ±π. Then, writing (4.8) as a sum of even-π-periodic and odd π-antiperiodic

functions as in (3.21), note that r+1 (λ) is constant because of (3.11), and any terms

involving ∂r+1 (λ)/∂λ vanish. For 2 ≤ j ≤ K+, each c+j (θ) is an even function, and

can therefore be written as a cosine series, i.e., c+j (θ) =
∑q

`=0 α
j
` cos(`θ), for some

coefficients {αj`}q`=0. Furthermore, by (3.11), c+j (0) = c+j (±π) = 0. Letting

θ = cos−1(t), we can transform c+j into a Chebyshev series. This series can be

expressed as c+j (t) =
∑q

`=0 α
j
`(t−1)(t+1)T`(t), where we have used the fact that cj(t)

must have roots at t = ±1 to satisfy that cj(θ) = 0 when θ = 0,±π. Transforming

back to θ, this gives c+j (θ) = sin2 θ
∑q

`=0 α
j
` cos(`θ), and it is clear that for j > 2,

each c+j (θ) function is divisible by sin θ. Every c–j(θ) is an odd function that can be

expanded as a sine series, and is therefore also divisible by sin θ. This means that

approximants constructed via the GE procedure are differentiable over the poles of

the sphere.

Using (4.8), it follows that ∂tf̃/∂x can be calculated by essentially 1D algorithms

involving differentiating Fourier expansions, as well as multiplying and dividing them

by cosine and sine. In the above expression, for example, we have

(sinλ)
∂rj(λ)

∂λ
=

n/2∑
k=−n/2−1

−(k + 1)bjk+1 + (k − 1)bjk−1
2

eikλ

and
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(cosλ)rj(λ) =

n/2∑
k=−n/2−1

bjk+1 + bjk−1
2

eikλ,

where bj−n/2−2 = bj−n/2−1 = 0 and bjn/2 = bjn/2+1 = 0. Note that the number of

coefficients in the Fourier representations of these derivatives has increased by two

modes to account for multiplication by sinλ and cosλ. Similarly, we also have

(cos θ)
∂cj(θ)

∂θ
=

m/2+1∑
k=−m/2−1

(k + 1)iajk+1 + (k − 1)iajk−1
2

eikθ,

where aj−m/2−2 = aj−m/2−1 = 0 and ajm/2 = ajm/2+1 = 0. Lastly, for (4.8), we must

compute cj(θ)/ sin θ. This can be done as follows:

cj(θ)

sin θ
=

m/2−1∑
k=−m/2

(M−1
sin a

j)ke
ikλ, Msin =



0 i
2

− i
2

0 i
2

− i
2

. . .
. . .

. . .
. . . i

2

− i
2

0 i
2

− i
2

0


, (4.9)

where aj = (aj−m/2, . . . , a
j
m/2−1)

T . Here, M−1
sin exists because it is of size m ×m and

m is an even integer.3

Our treatment of the artificial pole singularity by operating on the coefficients

directly appears to be new. The standard technique when using spherical coordinates

on a latitude-longitude grid is to shift the grid in the latitude direction so that the

poles are not sampled [17, 25, 83]. In (4.9), there is no need to explicitly avoid the

pole, it is easy to implement, and is possibly more accurate numerically than shifting

the grid. The total cost of this algorithm is O(K(m+ n)) operations.

We use similar ideas to compute (4.6) and (4.7), which require a similar number

of operations. They are implemented in the diff command of spherefun.

3This follows from the observation that the eigenvalues of Msin are cos(π`/(m+1)), ` = 1, . . . ,m,
so that when m is even all the eigenvalues are nonzero.
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4.2.5 The L2 Norm

In Spherefun, we employ the L2 norm, which is the continuous analogue of the matrix

Frobenius norm [69]. This is one of the few instances where it makes more sense to

work with f directly, rather than f̃ . For f expressed in spherical coordinates, the

Frobenius or L2 norm of f is given by

||f ||22 =

∫ π

−π

∫ π

0

f 2(λ, θ) sin θ dθ dλ. (4.10)

Computing ||f ||2 using (4.10) directly is numerically unstable, especially when f is

near zero. A more stable formulation is given in [53]: If f is L2 integrable, then

||f ||22 =
∞∑
j=1

σ2
j , (4.11)

where σ1 ≥ σ2 ≥ · · ·σj ≥ · · · are real and nonnegative numbers referred to as the

weighted singular values of f . For this reason, we are interested in the weighted SVD

of f , which is given by

f(λ, θ) =
∞∑
j=1

σjuj(θ)vj(λ), (λ, θ) ∈ [−π, π]× [0, π]. (4.12)

The singular functions {uj(θ)}, θ ∈ [0, π], and {vj(λ)}, λ ∈ [−π, π], are orthonormal,

respectively, under the following inner products:

< u, s >θ=

∫ π

0

u(θ)s(θ) sin θ dθ, < v, w >=

∫ π

−π
v(λ)w(λ) dλ. (4.13)

The weighted SVD for a function on the sphere is determined by applying a

generalization of QR factorization to quasimatrices. Restricting the low rank approx-

imation to f̃ given by (3.12) to (λ, θ) ∈ [−π, π]×[0, π], we form a [0, π]×K quasimatrix

C such that the jth column of C is cj(θ) in (3.12) restricted to θ ∈ [0, π]. Similarly, we

form the [−π, π]×K quasimatrix R such that the jth column of R is rj(λ), λ ∈ [−π, π].
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If D is a diagonal matrix containing the values {dj} from (3.12), then f ≈ CDRT . A

QR quasimatrix factorization with respect to the standard L2 inner product is given

in [73] and selects the Legendre polynomials to orthogonalize against. We apply this

procedure toR, but orthogonalize against the Fourier basis. In consideration of (4.13),

C is orthogonalized against the normalized Legendre polynomials P̃m(cos θ), which

are orthonormal with respect to the inner product < ·, · >θ in (4.13). This finds

{uj(θ)} in (4.12). Once the QR factorizations for C and R are known, the SVD is

determined through standard techniques, as discussed in [69].

In addition to providing a mathematically stable way to compute (4.10), the

weighted SVD gives the best rank–K approximation to f with respect to the weighted

L2 inner product on the disk. Unfortunately, use of the weighted SVD is limited be-

cause the rank 1 terms in (4.12) may be discontinuous at the poles, and consequently,

the truncation of (4.12) may not be smooth. The SVD is accessed in Spherefun

through the command svd(f), and it is used internally within norm(f) to compute

||f ||2.

4.2.6 Vector-valued Functions and Vector Calculus on the Sphere

Expressing vector-valued functions that are tangent to the sphere in spherical coordi-

nates is very inconvenient since the unit vectors in this coordinate system are singular

at the poles [61]. It is therefore common practice to express vector-valued functions

in Cartesian coordinates. In Cartesian coordinates, the components of the vector

field are smooth and can be approximated using the low rank techniques developed

in Section 3.2.

All the standard vector-calculus operations can be expressed in terms of the

tangential derivative operators in (4.5)–(4.7). For example, the surface gradient,
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∇S , of a scalar-valued function f on the sphere is given by the vector

∇Sf =

[
∂tf

∂x
,
∂tf

∂y
,
∂tf

∂z

]T
,

where the partial derivatives are defined in (4.5)–(4.7). The surface divergence and

curl of a vector field f =

[
f1, f2, f3

]T
that is tangent to the sphere can also be

computed using (4.5)–(4.7) as

∇S · f =
∂tf1
∂x

+
∂tf2
∂y

+
∂tf3
∂z

and ∇S × f =



∂tf3
∂y
− ∂tf2

∂z
∂tf1
∂z
− ∂tf3

∂x
∂tf2
∂x
− ∂tf1

∂y

 .

The result of the surface curl ∇S × f is a vector that is tangent to the sphere.

In 2D, one can define the “curl of a scalar-valued function” as the cross product

of the unit normal vector to the surface and the gradient of the function. For a

scalar-valued function on the sphere, the curl in Cartesian coordinates is given by

n×∇Sf =


y
∂tf

∂z
− z∂

tf

∂y

z
∂tf

∂x
− x∂

tf

∂z

x
∂tf

∂y
− y∂

tf

∂x

 , (4.14)

where x, y, and z are points on the unit sphere given by (2.13). This follows from the

fact that the unit normal vector at (x, y, z) on the unit sphere is just n = (x, y, z)T .

The final vector calculus operation we consider is the vorticity of a vector field,

which for a two-dimensional surface is a scalar-valued function defined as

ζ = (∇S × f) · n, and can be computed based on the operators described above.

Vector-valued functions are represented in Chebfun by spherefunv objects. These

objects contain three spherefun objects, one for each component of the vector-valued
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function, and can be used for computations in the same way as spherefun objects. Low

rank techniques described in Section 3.2 are employed on each component separately.

The operations listed above can be computed using the grad, div, curl, and vort

functions; see Figure 4.1 for an example.

Figure 4.1: Arrows indicate the tangent vector field generated from u = ∇S ×
ψ, where ψ(λ, θ) = cos θ + (sin θ)4 cos θ cos(4λ), which is the stream function for
the Rossby–Haurwitz benchmark problem for the shallow water wave equations [79].
After constructing ψ in Spherefun, the tangent vector field was computed using
u = curl(psi), and plotted using quiver(u). The superimposed false color plot
represents the vorticity of u and is computed using vort(u).

4.2.7 Miscellaneous Operations

The spherefun class is written as part of Chebfun, which means that spherefun objects

have immediate access to all the operations available in Chebfun. For operations that

do not require a strict adherence to the symmetry of the sphere, we can use Cheb-

fun2 with spherical coordinates [67]. Important examples include two-dimensional

optimization such as min2, max2, and roots as well as continuous linear algebra

operators such as lu and flipud. The operations that use the Chebfun2 technology

are performed seamlessly without user intervention.
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4.3 Numerical Computations with Functions on the Disk

In this section, we describe the underlying mathematics for several of the algorithms

used in Diskfun. These methods rely on the fact that every smooth function g on the

disk is associated with a BMC-II function g̃ that is periodic in θ. We compute with a

low rank approximation to g̃ as in (3.14), which is constructed by the GE procedure

in Figure 3.5. In (3.14), each cj(ρ) and rj(θ) can be expressed by a Chebyshev and

Fourier series, respectively, so that for 1 ≤ j ≤ K,

cj(ρ) =
n−1∑
`=0

aj` T`(ρ), rj(θ) =

m/2−1∑
k=−m/2

bjk e
iθk, (4.15)

where T`(ρ) is the Chebyshev polynomial of degree `, and m is an even integer.

The algorithms for computing with functions represented in Fourier and Cheby-

shev bases differ considerably from one another. However, implementation within

Chebfun environment is significantly simplified due to Chebfun’s underlying object-

oriented class structure. For example, Chebfun overloads commands such as sum(h)

(integration) or diff(h) (differentiation), so that the same syntax executes different

underlying algorithms based on whether the object h represents a periodic function

or not [81].

4.3.1 Pointwise Evaluation

To efficiently evaluate g̃ at a fixed point (θ∗, ρ∗), we use (3.14), observing that

g̃(θ∗, ρ∗) ≈
K∑
j=1

djcj(ρ∗)rj(θ∗). (4.16)

Evaluation of g̃ proceeds as 2K 1D function evaluations. Functions cj(ρ), 1 ≤ j ≤ K,

are evaluated using Clenshaw’s algorithm [74, Ch. 19], and functions rj(θ), 1 ≤ j ≤ K,
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are evaluated using Horner’s scheme [81]. Altogether, this requires a total O(K(n+

m)) operations, and this algorithm is implemented in the feval command.

4.3.2 Computation of Fourier–Chebyshev Coefficients

As with functions on the sphere, the low rank form of g̃ facilitates the use of fast

transform methods based on the FFT. We can write the truncated Fourier–Chebyshev

expansion of g̃ as follows:

g̃(θ, ρ) ≈
m/2−1∑
k=−m/2

n−1∑
j=0

XjkTj(ρ)eikθ, (4.17)

where X is a matrix whose entries are the 2D Fourier–Chebyshev coefficients of g̃.

Using the low rank form of g̃ given by (3.14), the matrix X can also be expressed in

low rank form as

X = ADBT .

Here, A is anm×K matrix whose jth column contains the coefficients {ajk} from (4.15),

B is an n×K matrix whose jth column contains the coefficients {bj`} from (4.15), and

D is a diagonal matrix consisting of the pivot values {dj}. Given a sample of g̃ on

an n×m Fourier–Chebyshev grid, the direct computation of the Fourier–Chebyshev

coefficients of g̃ costs O(mn log(mn)) operations. However, using the GE procedure

in Section 3.2, the low rank form of X can be found in only O(K3 + K2(m + n) +

K(m logm + n log n)) operations. This is because once the GE process adaptively

selects the skeleton representing g̃ at a cost of O(K3), the coefficients in (4.15) for

every cj(ρ) and rj(θ) in (3.14) can be found in O(K2(m+n) +K(m logm+n log n))

operations by sampling g̃ along the appropriate row and column slices, and then using

FFT-based algorithms.
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Several procedures, such as integration and differentiation, can be executed using

the ADBT factorization of X. Using the command coeffs2 in Diskfun, X can be

explicitly computed with an additional O(Kmn) operations.

The above operation retrieves coefficients when supplied with a sample of g̃, and

the inverse of this operation provides an efficient way to sample g̃ on a p× q Fourier–

Chebyshev grid once the coefficient matrix X is known. Given X in low rank form,

this proceeds in O(K(p log p+ q log q)) operations, and is accessed in diskfun through

the sample command.

These algorithms are regularly employed in Diskfun, as we store a coefficient-based

representation of g̃, but frequently require the values of g̃.

4.3.3 Integration

To integrate g̃(θ, ρ) over the unit disk, we again take advantage of the low rank form

of (2.12), transforming the double integral into sums of 1D integrals:∫ π

−π

∫ 1

0

g̃(θ, ρ)ρ dρ dθ ≈
K∑
j=1

dj

∫ π

−π
rj(θ)dθ

∫ 1

0

cj(ρ) ρ dρ. (4.18)

For integration of the periodic rj(θ) functions, the trapezoidal rule is used. To evaluate∫ 1

0
cj(ρ)ρdρ, the coefficients for ρcj(ρ) are computed, and then Clenshaw–Curtis

quadrature is applied [74, Ch. 19]. These 2K 1D integrals can be computed in

a total of O(Kn) operations. This can be further reduced using (3.22): the odd,

π-antiperiodic terms will not contribute to the integral and can be discarded from

the computation.

This algorithm is implemented in the sum2 command. For example, the integral

of g(x, y) = −x2 − 3xy − (y − 1)2 over the unit disk is −3π/2, and this is computed

in Diskfun using two lines of code:
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g= diskfun(@(x,y) -x.ˆ2-3*x.*y -(y-1).ˆ2)

sum2(g)

ans =

-4.712388980384692

The error for this calculation is determined with abs(sum2(f)+3*pi/2), which

gives 1.7764× 10−15.

4.3.4 Differentiation

When considering derivatives on the disk, note that partial differentiation with respect

to ρ can lead to artificial singularities at ρ = 0. For example, if g(θ, ρ) = ρ2, then

∂g/∂ρ = 2ρ , which is not smooth on the disk. In contrast, for a smooth function g̃,

partial derivatives with respect to x and y will always be well-defined.4 For this reason,

and because of the usefulness of these operators in vector calculus (see Section 4.3.6),

we consider efficient and stable ways to calculate ∂g̃/∂x and ∂g̃/∂y.

By (2.15), ρ =
√
x2 + y2, and θ = tan−1(y/x), so the chain rule can be applied to

obtain

∂g̃

∂x
= cos θ

∂g̃

∂ρ
− 1

ρ
sin θ

∂g̃

∂θ
, (4.19)

∂g̃

∂y
= sin θ

∂g̃

∂ρ
+

1

ρ
cos θ

∂g̃

∂θ
. (4.20)

Exploiting the low rank form given in (3.14), equation (4.19) can be written as

∂g̃

∂x
≈

K∑
j=1

dj

(
∂cj(ρ)

∂ρ

)(
cos θrj(θ)

)
−

K∑
j=1

dj

(
cj(ρ)

ρ

)(
sin θ

∂rj(θ)

∂θ

)
, (4.21)

4Note that unlike the partial derivatives computed for the sphere (see Section 4.2), which are
surface gradients, the partial derivatives on the disk are defined in the usual sense.
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and (4.20) can be similarly described.

Here we make an important observation. The above result establishes that ap-

proximants are differentiable at ρ = 0 only if
∑K

j=1 cj(ρ) has a root at ρ. Suppose g̃

is nonzero at ρ = 0 and write the approximant in the form given by (3.22). Then,

because of (3.13), for j ≥ 2, each term d+

j c
+

j (ρ)r+j (θ) is zero at ρ = 0. Since c+j (ρ) is an

even Chebyshev polynomial, it must be of the form A1ρ
2 +A2ρ

4 + · · ·+Aqρ
2q, where

q ≤ b(n − 1)/2c. This implies that these functions are all divisible by ρ. For j = 1,

r+1 (θ) is constant by (3.13), and so all terms in (4.21) involving derivatives of r+1 (θ)

with respect to θ vanish. Since every c–j(ρ) function for 1 ≤ j ≤ K− is an odd function,

these are also always divisible by ρ. This means that the approximants constructed by

the BMC-II structure preserving GE procedure have inherited properties that ensure

differentiability over ρ = 0.

Using (4.15), we have

sin θ
∂rj(θ)

∂θ
=

m/2−1∑
k=−m/2

−(k + 1)bjk+1 + (k − 1)bjk−1
2

eikθ, (4.22)

cos θ rj(θ) =

m/2−1∑
k=−m/2

bjk+1 + bjk−1
2

eikθ, (4.23)

where b−m/2−1 and bm/2 are set to zero. Expanding each cj(ρ) as in (4.15), the

recursion formula in [43, p. 34] gives the coefficients for ∂cj/∂ρ in O(n) operations.

To determine cj(ρ)/ρ, we follow a procedure analogous to the one introduced in

Section 4.2.4. We construct the operator Bρ, which represents multiplication by the

function g(ρ) = ρ in the Chebyshev basis. Then, we have
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cj(ρ)

ρ
=

n−1∑
`=0

(B−1ρ aj)`T`(ρ), Bρ =



0 1
2

1 0 1
2

1
2

. . .
. . .

. . .
. . . 1

2
1
2

0 1
2

1
2

0


, (4.24)

where aj = (aj0, . . . , a
j
n−1)

T . Here, B−1ρ exists because we choose B to be of size n×n,

where n is an even integer. Working directly with the coefficients via (4.24) allows one

to bypass the artificial singularity introduced in (4.21), without explicitly avoiding

computation at ρ = 0.

Differentiation is accessed through the diff command in Diskfun, and requires

O(K(m+ n)) operations to perform.

4.3.5 The L2 Norm

Just as with Spherefun, we frequently require the L2 norm in Diskfun. This is one of

the few instances in Diskfun where it makes more sense to work with g directly, as

opposed to g̃. For g expressed in polar coordinates, the Frobenius or L2 norm of g is

given by

||g||22 =

∫ π

−π

∫ 1

0

g2(θ, ρ)ρ dρ dθ. (4.25)

Since computing ||g||2 using (4.25) directly is numerically unstable, we use a more

stable formulation of ||g||2 given by [53]: If g is L2 integrable, then

||g||22 =
∞∑
j=1

σ2
j , (4.26)

where σ1 ≥ σ2 ≥ · · ·σj ≥ · · · are real and nonnegative numbers referred to as the

weighted singular values of f . This requires finding the weighted SVD of g,
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g(θ, ρ) =
∞∑
j=1

σjuj(ρ)vj(θ), (θ, ρ) ∈ [−π, π]× [0, 1]. (4.27)

Here, the singular functions {uj(ρ)}, ρ ∈ [0, 1], and {vj(θ)}, θ ∈ [−π, π], are orthonor-

mal, respectively, under the following inner products:

< u, s >ρ=

∫ 1

0

u(ρ)s(ρ)ρ dρ, < v, w >=

∫ π

−π
v(θ)w(θ) dθ. (4.28)

Just as in Section 4.2.5, we use a generalization of the QR factorization for

quasimatrices to find the weighted SVD for a function on the disk. Restricting the

approximation to g̃ in (3.14) to (θ, ρ) ∈ [−π, π] × [0, 1] and forming the quasimatrix

R consisting of the periodic rj(θ) functions in (3.14), we apply the procedure in [73],

but choose the Fourier basis to orthogonalize against. The quasimatrix C consists of

the cj(ρ) functions in (3.14) except that ρ is restricted to [0, 1]. Here, we choose to

orthogonalize against

√
2

J1(ωk)
J0(ωkρ), k = 1, 2, . . . ,

where Ja is the Bessel function of order a and ωk is the kth positive root of J0(ρ).

This finds {uj(ρ)}, which are orthonormal with respect to (4.28). Once the QR

factorizations for C and R are known, the SVD is determined through standard

techniques [69].

The weighted SVD provides a numerically stable way to compute (4.25), and

additionally it gives the best rank K approximation to g with respect to the weighted

L2 inner product on the disk. Use of the weighted SVD is limited because the rank 1

terms in (4.27) may not be continuous at ρ = 0, and consequently, the truncation

of (4.27) is also not always smooth. The SVD is accessed in Diskfun through the

command svd(g), and applied internally within norm(g)to compute ||g||2.
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4.3.6 Vector-valued Functions and Vector Calculus on the Disk

Vector-valued functions can also be constructed in Diskfun. These functions are

represented with respect to the Cartesian coordinate basis vectors î and ĵ, since not all

smooth vector fields defined over the disk have smooth components when represented

with respect to the polar coordinate basis vectors, r̂ and θ̂. For example, the vector

field given by g = 0i + j is expressed as g = sin θr + cos θθ in polar coordinates, and

both of these functions are discontinous at ρ = 0.

Vector-valued functions are accessed in Diskfun through the creation of diskfunv

objects. A diskfunv object consists of two diskfun objects, one for each component of

the vector-valued function. Algorithms involving diskfunv objects are implemented

for algebraic actions, such as addition and multiplication, as well as vector-based

operations, such as the dot product, the cross product, and divergence. Commands

that map scalar-valued functions to vector-valued functions and vice-versa, such

as grad(g) and curl(g), are also included. In the latter case, the standard

interpretation is used, i.e., ∇ × g = [gy,−gx] when g is a scalar function, and

∇ × g = ux − vy when g = [u, v] is a vector function. As an example, consider

the potential functions given by

ψ(x, y) = 10e−10(x+.3)
2−10(y+.5)2 + 10e−10(x+.3)

2−10(y−.5)2 + 15(1− x2 − y2),
φ(x, y) = 10e−10(x−.6)

2−40y2 ,
(4.29)

and the vector field u = (∇×ψ) +∇φ. This field consists of the sum of a divergence-

free term, ∇×ψ, and a curl-free term, ∇φ. Once ψ and φ are constructed as diskfun

objects, u can be constructed with a single line of code: u = curl(psi)+grad(phi).

Figure 4.2 displays a plot of u together with its curl and divergence.
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Figure 4.2: The vector function u = ∇× ψ +∇φ, with ψ and φ defined in (4.29),
together with its curl, ∇×u (right), and divergence, ∇·u (left). The field was plotted
using quiver(u), while the curl and divergence were computed using curl(u) and
div(u) respectively, and plotted using contour.

4.3.7 Miscellaneous Operations

Diskfun is included as an object class as part of Chebfun, and so has access to many

of the operations in Chebfun. Operations that do not strictly require symmetry

properties related to the geometry of the disk are computed using Chebfun2 with

functions defined in polar coordinates [67]. This includes optimization routines, such

as min2, max2, and roots, as well as matrix-inspired procedures such as trace

and lu, among many others.
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CHAPTER 5

AN OPTIMAL POISSON SOLVER ON THE SPHERE

AND DISK

The DFS method and its disk analogue can be used in conjunction with Fourier and

ultraspherical spectral methods to formulate optimal solvers for Poisson’s equation

on the sphere and disk. We have implemented these solvers in our software in an

integrated way: the output given in response to the command poisson is automati-

cally represented by a spherefun or diskfun object, and can therefore immediately be

visualized or operated on using standard commands.

A description of the algorithm for the sphere is given in Section 5.1, and in it we

apply standard operators derived from the Fourier spectral method [9]. In Section 5.2,

we use the ultraspherical spectral method [48] to formulate an optimal complexity

algorithm for the disk. A detailed description of the ultraspherical spectral method

is provided in Appendix B.

5.1 A Poisson Solver on the Sphere

Combining the DFS method with the Fourier spectral method, an optimal Poisson

solver for the sphere can be formulated. Related approaches can be found in [18, 56,

83].
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Given a function f on the sphere that satisfies
∫ π
0

∫ π
−π f(λ, θ) sin θdλdθ = 0,

Poisson’s equation in spherical coordinates is given by

sin2 θ
∂2u

∂θ2
+ cos θ sin θ

∂u

∂θ
+
∂2u

∂λ2
= sin2 θf, (λ, θ) ∈ [−π, π]× [0, π]. (5.1)

Due to the integral condition on f , there are infinitely many solutions for (5.1) that

all differ by a constant. To specify a unique solution, we additionally require that∫ π

0

∫ π

−π
u(λ, θ) sin θdλdθ = 0.

To ensure that the solution u is 2π-periodic and continuous over the poles, we apply

the DFS method (see Section 3.1) and seek the solution ũ to the related equation

sin2 θũθθ + cos θ sin θũθ + ũλλ = sin2 θf̃ , (λ, θ) ∈ [−π, π]2, (5.2)

where f̃ is a BMC-I, bi-periodic function. It is straightforward to deduce that ũ

must also be a BMC-I and bi-periodic function, and is therefore differentiable on the

sphere. Since ũ coincides with u on the domain [−π, π] × [0, π], the same integral

constraint is imposed on ũ: ∫ π

0

∫ π

−π
ũ(λ, θ) sin θdλdθ = 0. (5.3)

Every function in (5.2) is bi-periodic, so we discretize the equation using the Fourier

spectral method [9]. In this case, we assume an approximation to ũ given by

ũ(λ, θ) ≈
m/2−1∑
j=−m/2

n/2−1∑
k=−n/2

Xjke
ijθeikλ, (λ, θ) ∈ [−π, π]2, (5.4)

where m and n are even integers, and we seek the coefficient matrix X ∈ Cm×n.

Writing ũ and f̃ each as a Fourier series in λ yields

ũ ≈
n/2−1∑
k=−n/2

φk(θ)e
ikλ, f̃ ≈

n/2−1∑
k=−n/2

ψk(θ)e
ikλ, (θ, λ) ∈ [−π, π]2, (5.5)
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and when we plug this into (5.2), the equation separates into the following n linear

ordinary differential equations:

sin2 θφ′′k(θ) + cos θ sin θφ′k(θ)− k2φk(θ) = sin2 θψk(θ), (λ, θ) ∈ [−π, π]2, (5.6)

where k = −n/2, . . . , n/2− 1. For each k, we have

φk(θ) ≈
m/2−1∑
j=−m/2

Xjke
ijθ,

so finding the Fourier coefficients of φk yields the kth column of X, which we denote

as Xk.

Discretization

To solve (5.6), we require operators for differentiation and for multiplication by sin θ

and cos θ. Applying these operations to (5.5), we find that, for example,

∂φ

∂θ
=

m/2−1∑
j=−m/2

jiXjke
ijθ, (cos θ)φ(θ) =

m/2−1∑
j=−m/2

Xj+1,k +Xj−1,k

2
eijθ,

and we can discretize these operations by the matrices

Dm =



−mi
2

. . .
−i

0
i
. . .

(m−2)i
2


, Mcos =



0 1
2

1
2

0 1
2

1
2

. . .
. . .

. . .
. . . 1

2
1
2

0 1
2

1
2

0


.

The operator Msin for multiplication by sin θ is formulated in a similar way and given

explicitly in (4.9). Using these operators, (5.6) is discretized as(
M2

sinD
2
m +McosMsinDm − k2

)
Xk = rk, (5.7)

where rk is a vector containing the−m/2 . . .m/2−1 Fourier coefficients for sin2 θψk(θ).
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For k 6= 0, the linear systems in (5.7) are invertible and have a pentadiagonal

structure. Each can be solved in O(m) operations using a sparse LU solver, such

as the one employed by calling ‘backslash’ in MATLAB. Since there are n − 1 such

systems to solve, the overall computational cost is O(mn) for these systems.

When k = 0, the linear system (5.7) is not invertible. This is because without

imposing the integral consraint (5.3), there are infinitely many solutions differing

by constants, and we must apply the integral constraint to get a unique result. To

discretize the constraint, we note that

∫ π

0

∫ π

−π
ũ(λ, θ) sin θdλdθ ≈ 2π

m/2−1∑
j=−m/2

Xj0

1 + eiπj

1− j2
,

which can be written as 2πwTX0 = 0, where the vector w is given in (4.4). We impose

2πwTX0 = 0 on X0 by replacing the zeroth row of the linear system

(M2
sinD

2
m +McosMsinDm)X0 = r0 with 2πwTX0 = 0. We have selected the zeroth row

because it is zero in the linear system. Thus, we solve the following linear system:[
wT

P
(
M2

sinD
2
m +McosMsinDm

)]X0 =

[
0

P (r0)

]
. (5.8)

Here, P ∈ R(m−1)×m is a projection matrix that removes the row corresponding to

the zeroth mode, i.e.,

P
(
v−m/2, . . . , v−1, v0, v1, . . . , vm/2−1

)T
=
(
v−m/2, . . . , v−1, v1, . . . , vm/2−1

)T
.

The linear system in (5.8) is banded except for one dense row. It can be solved in

O(m) using the Sherman–Morrison formula as described in Section 5.2. In practice,

since solving this single linear system will not dominate the computational cost of the

overall procedure, we solve using ‘backslash’ in MATLAB. This employs a sparse LU

solver at a cost of O(m) operations.
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Figure 5.1: Left: Solution to ∇2u = sin(50xyz) with a zero integral con-
straint computed by f = spherefun(@(x,y,z) sin(50*x.*y.*z)); u =
spherefun.poisson(f,0,150,150);, which employs the algorithm above with
m = n = 150. Right: Execution time of the Poisson solver as a function of the number
of unknowns, nm/2, when m = n.

The resulting Poisson solver is said to be of optimal complexity because it finds

the mn Fourier coefficients for ũ in O(mn) operations. This does not include the

computation of the Fourier coefficients of sin2 θf̃ , which, if we exploit the low rank

form of f̃ and use the techniques described in Section 4.2.2, costs O(Kmn). If f is

reasonably smooth, then typically K � min(m,n). We can additionally exploit the

parity properties possessed by BMC-I functions (see Section 3.4) to further reduce

the cost of the solver by a factor of 4.

An Example

Figure 5.1 (left) displays the solution to ∇2u = sin(50xyz), where m = n = 150.

Before applying the algorithm, the matrix of 2D coefficients for sin(50xyz) was found

using structure-preserving GE and the ideas in Section 4.2.2. Since sin(50xyz) has a

numerical rank of 12, the cost is O(mn) operations.

In Figure 5.1 (right), the complexity of the Poisson solver is verified by showing
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timings for m = n. We have denoted the number of degrees of freedom of the final

solution as mn/2 since this is the number that is employed on the solution u. Without

explicit parallelization, we can solve for 108 degrees of freedom in the solution in one

minute on a standard laptop.1

5.2 A Poisson Solver on the Disk

Given a function g(θ, ρ) on the unit disk, we seek the solution u(θ, ρ) to Poisson’s

equation, ∇2u = g, with Dirichlet boundary conditions prescribed as u(θ, 1) = h(θ),

where h is a 2π-periodic function.

To enforce that the numerical solution u is smooth over u(θ, 0) = 0, we apply the

disk analogue to the DFS method and consider solving the related equation, ∇2ũ = g̃,

where g̃ is the BMC-II extension of g given by (3.4). An additional boundary condition

is given by u(θ,−1) = h(θ).

The equation ∇2ũ = g̃ is expressed in polar coordinates as

ρ2
∂2ũ

∂ρ2
+ ρ

∂ũ

∂ρ
+
∂2ũ

∂θ2
= ρ2g̃, (θ, ρ) ∈ [−π, π]× [−1, 1], (5.9)

where the standard formulation is multiplied by by ρ2 so that the variable coefficients

are low degree polynomials in ρ. It is a straightforward exercise to show that ũ must

also possess BMC-II symmetry and therefore corresponds to a continuous function

on the disk. Restricting ũ to [−π, π]× [0, 1] gives u.

The solution ũ is discretized as a Fourier–Chebyshev expansion as in (4.17):

ũ(θ, ρ) ≈
m/2−1∑
k=−m/2

n−1∑
j=0

XjkTj(ρ)eikθ, (5.10)

1Timings were done on a MacBook Pro using MATLAB 2015b without explicit parallelization.
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and we seek the coefficient matrix X ∈ Cn×m. To find X, consider ũ and g̃ each

expressed as a Fourier series as in (2.16):

ũ ≈
m/2−1∑
k=−m/2

φk(ρ)eikθ, g̃ ≈
m/2−1∑
k=−m/2

ψk(ρ)eikθ, (θ, ρ) ∈ [−π, π]× [−1, 1]. (5.11)

Plugging these into (5.9), the set of equations decouples into m linear ordinary

differential equations, so that for each k = −m/2, . . . ,m/2− 1,

ρ2φ′′k(ρ) + ρφ′k(ρ)− k2φk(ρ) = ρ2ψk(ρ), (5.12)

with boundary conditions given by φk(1) = γk and φk(−1) = (−1)kγk, where γk is

the kth Fourier coefficient of h(θ). The coefficients in the Chebyshev expansion of the

unknown function φk(ρ) are the values in the kth column of X, which we will denote

by Xk.

Discretization

To discretize (5.12), we use the ultraspherical spectral method (see Appendix B). We

require approximations to operators that represent differentiation on φk(ρ) by acting

on the coefficients of the Chebyshev expansion of φk. These are given in (B.7) as

D1 =


0 1

2
. . .

n− 1
0

 D2 =



0 0 4
6

. . .

2(n− 2)
0
0


.

Here, D1Xk gives the coefficients for the expansion of φ′(ρ) in the C(1) basis, and

D2Xk gives the coefficients for the expansion of φ′′(ρ) in the C(2) basis, where C(1)

and C(2) are families of ultraspherical polynomials (see Appendix B).
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To find ρφ′(ρ), we require an operator for multiplying by ρ in the C(1) basis.

Using (B.14), this operator is explicitly given as

M1[ρ] =



0 1
2

1
2

0 1
2

1
2

. . .
. . .

. . .
. . . 1

2
1
2

0 1
2

1
2

0


. (5.13)

Similarly, we use (B.16) to create the operator M
2[ρ

2
]

for multiplying by ρ2 in the

C(2) basis for ρ2φ′′(ρ). As discussed in [48], the multiplication operators M1[ρ] and

M
2[ρ

2
]
are banded, and in this case the bandwidths are 1 and 2, respectively. We then

apply the tridiagonal conversion operators S1 and S0 given by (B.11) to transform

each term of the discretized ODE into the C(2) basis. Using these operators, (5.12)

is discretized as follows:

(
M

2[ρ
2
]
D2 + S1M1[ρ]D1 + S1S0k

2
)

︸ ︷︷ ︸
= L

Xk = rk, (5.14)

where the n×1 vector rk consists of the first n coefficients in the expansion of ρ2ψk(ρ)

in the C(2) basis. This forms a banded, pentadiagonal linear system of equations. As

discussed in Appendix B, we impose boundary conditions on the system using the

boundary bordering technique [48, 50]. This removes the final 2 rows of L and rk

in (5.14) and replaces them with the boundary conditions. We then permute the

boundary conditions to the top two rows of the n × n linear system to form the

system
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

1 −1 1 −1 · · · (−1)n−1

1 1 1 1 · · · 1

P
(
M

2[ρ
2
]
D2 + S1M1[ρ]D1 + S1S0k

2
)

︸ ︷︷ ︸
= B


Xk =


γk

(−1)kγk

Prk

 , (5.15)

where P is a projection operator that removes the final two rows (entries) from a

matrix (vector). For example, in standard MATLAB notation, B = L(1: (n − 2), : )

and Prk = rk(1 : (n− 2)).

The results on parity in Section 3.4 show that whenever k is even, φk(ρ) is an

even function. The odd-indexed Chebyshev coefficients for even functions are zero.

Likewise, when k is odd, the even-indexed Chebyshev coefficients of φk(ρ) are zero.

Applying this result makes one of the boundary conditions redundant, so that the

system (5.15) can be reduced to a nearly tridiagonal system of size n/2 × n/2 with

one dense row at the top.

Without loss of generality, consider the case where k is even. Let

A =

[
u

P+B

]
,

where u = [1, 0, 0, · · · , 0]T is of size n/2 × 1, and P+ is a projection operator that

selects out only the terms associated with even coefficients in (5.15). For example,

P+B = B(1 :2 : (n− 2), 1 : 2 :n), and P+Prk = rk(1 : 2 : (n− 2)). Then, the system of

equations we must solve is

[
A+ uvT

]
P+(Xk) =

[
γk

P+Prk

]
︸ ︷︷ ︸

y

.

Here, v = [0, 1, 1, . . . , 1]T , and is of size n/2× 1.

We have decomposed the matrix in this equation into a sum of a tridiagonal
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matrix A and a rank 1 matrix uvT . This allows us to solve the system using the

Sherman–Morrison formula [58], which gives that

P+Xk = A−1y − A−1uvTA−1y

1 + vTA−1u
. (5.16)

Since A is tridiagonal, A−1y and A−1u can each be solved in O(n) operations. The

product of a matrix and the vector v can be computed in O(n) operations since v only

has 1 nonzero entry. As a result, each column of P+Xk is found in O(n) operations.

This method is highly efficient and appears stable in practice, but if stability is a

concern, then the system in (5.15) can also be solved with the adaptive QR algorithm

in [48] at O(n) operations. The adaptive QR algorithm is known to be stable, even

for very large n.

We will solve m such systems in total, so the overall computational cost for finding

the coefficient matrix X is O(mn) operations, and we have saved a factor of 2 by

applying parity properties. When g̃ is real, ũ is also real, and we save an additional

factor of 2 by using symmetry properties on the Fourier coefficients of ũ. We note that

the coefficients for ρ2g̃ from (5.9) can be computed using the ideas in Section 4.3.2

in an additional O(Kmn) operations, where K is the numerical rank of g̃, and it is

often the case that K � min(m,n).

An Example

Figure 5.2 (left) displays the solution to ∇2u = g computed with the poisson

command in Diskfun. Here, g is numerically a rank 16 function, given by

g(θ, ρ) = e−40(ρ
2−1)4 sinh

(
5− 5ρ11 cos(11θ − 11/

√
2)
)
, (5.17)

and the boundary condition is u(θ, 1) = 1. Figure 5.2 (right) shows the wall clock

time in seconds of our algorithm vs. the degrees of freedom used, verifying the O(mn)
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Figure 5.2: Left: Solution to ∇2u = g with boundary condition u(θ, 1) = 1, where
g is given in (5.17). Right: Execution (wall clock) time of the Poisson solver as a
function of the number of unknowns, mn/2. We denote the degrees of freedom by
mn/2 because this number is used to define the solution u on the disk, where mn
unknowns are used on ũ.

complexity of the solver. This includes the cost of computing the coefficients for

ρ2g explicitly from a low rank approximation to ρ2g. On a laptop computer with

no parallelization,2 the numerical solution u can be computed using 108 degrees of

freedom in just under a minute.

2Timings performed on a 2015 MacBook Pro using MATLAB 2015b, without explicit paralleliza-
tion.
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CHAPTER 6

CONCLUSIONS

This work has resulted in the creation of a new low rank approximation procedure

for functions in polar and spherical geometries. We discuss this development in

Chapter 3, where we synthesize the classic double Fourier sphere (DFS) method and

its disk analogue with a newly-developed structure-preserving Gaussian elimination

(GE) procedure. We re-examine classic observations on essential parity properties

for functions in spherical and polar geometries through the more generalized lens of

what we have coined block-mirror-centrosymmetric (BMC) functions (see Section 3.4).

This generalization allows us to enforce parity properties associated with functions on

the sphere and disk on function values, as opposed to coefficients, which is what the

structure-preserving GE procedure requires. Through this procedure, we construct

adaptive low rank approximations to functions on the sphere and disk that are smooth

in their respective domains, near-optimal in their underlying discretizations, and allow

for the use of FFT-based algorithms.

We have formulated a suite of algorithms that exploit the convenient properties

of low rank approximants with BMC structure. This includes efficient schemes for

differentiation, integration, vector calculus, and finding the solution to Poisson’s equa-

tion, along with many other operations. These algorithms are detailed in Chapters 4

and 5, and they have been implemented in the Spherefun and Diskfun software, which
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is publicly available as a part of Chebfun (www.chebfun.org). Following the prece-

dence set by the Chebfun developers, our software efficiently performs computations

to approximately machine precision and is accessed through an interface that is highly

intuitive to MATLAB users. As a result, researchers, instructors, and students can

now easily explore and effectively solve many mathematical problems associated with

functions on the sphere and disk, without concern for the underlying discretization.
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APPENDIX A

PROPERTIES OF BMC FUNCTIONS

A.1 Linear Algebra for BMC Matrices

Given a BMC function f̃(ξ, η) (see Def. 3.3), a discretization of f̃ on a 2n× 2n grid

that is symmetric about ξ = 0 and η = 0 results in a matrix M ∈ R2n×2n that is said

to have BMC symmetry.1 Using Jn to denote the n× n row exchange operator,2 the

matrix M can be written using n× n blocks as

M =

[
B C
JnC JnB

]
. (A.1)

We can also write M as the product

M =

[
In 0
0 Jn

] [
B C
C B

]
︸ ︷︷ ︸

A

, (A.2)

where In is the n× n identity matrix. The matrix A has a special structure, and by

writing M in terms of A, we observe that BMC matrices are closely connected to a

broader class of matrices known as R-symmetric matrices.

Definition A.1 (R-symmetric matrices). A real matrix R is said to be involuntary

if R−1 = R. Given an involuntary matrix R ∈ R2n×2n, a matrix A ∈ R2n×2n is called

1Here, we consider BMC matrices with even dimensions for the sake of simplicity in exposition,
and note that similar, but slightly more complicated results hold for BMC matrices with odd
dimensions.

2The entries of Jn are 1 along its main antidiagonal, and zero elsewhere.
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R–symmetric if RAR = A.

The matrix A in (A.2) is R-symmetric with the following block-centrosymmetric

matrix:

R =

[
0 In
In 0

]
. (A.3)

We refer to R as a 2-by-2 block exchange matrix, and so A is said to be block

exchange symmetric (BES). In [75], several properties of R-symmetric, and therefore

BES, matrices are discussed. By relating BMC matrices to BES matrices via (A.2),

these results can be used to understand certain properties of BMC matrices. Here,

we use properties of BES matrices to derive the SVD for BMC matrices.

First, observe that the spectral decomposition of the block exchange matrix R

in (A.3) is

R =
[
P Q

] [In 0
0 −In

] [
P T

QT

]
, P =

1√
2

[
In
In

]
, Q =

1√
2

[
In
−In

]
.

Define APP = P TAP, and AQQ = QTAQ, observing that these simplify to

APP = B+C, and AQQ = B−C, respectively. Let the SVD for each of these matrices

be

APP = UPΣPV
T
P , AQQ = UQΣQV

T
Q .

Theorem 11 in [75] shows that the SVD for the R-symmetric matrix A is then given

by

A =
[
PUP QUQ

] [ΣP 0
0 ΣQ

] [
V T
P P

T

V T
QQ

T

]
, (A.4)

which can be re-written as

A =

[
1√
2
UP

1√
2
UQ

1√
2
UP − 1√

2
UQ

][
ΣP 0
0 ΣQ

][ 1√
2
V T
P

1√
2
V T
P

1√
2
V T
Q − 1√

2
V T
Q

]
. (A.5)
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We now consider the BMC matrixM , and observe that by substituting (A.5) into (A.2),

M =

[
In 0
0 Jn

] [
B C
C B

]
=

[
1√
2
UP

1√
2
UQ

1√
2
JnUP − 1√

2
JnUQ

] [
ΣP 0
0 ΣQ

][ 1√
2
V T
P

1√
2
V T
P

1√
2
V T
Q − 1√

2
V T
Q

]
.

(A.6)

Since the matrices

1√
2

[
UP UQ
JnUP −JnUQ

]
,

[
1√
2
V T
P

1√
2
V T
P

1√
2
V T
Q − 1√

2
V T
Q

]
are unitary, (A.6) must be the SVD of M . Written in a more revealing form, this is

M =
1

2

r∑
k=1

(σP )k

[
UP (:, k)
JUP (:, k)

] [
VP (k, :) VP (k, :)

]
(A.7)

+
1

2

s∑
k=1

(σQ)k

[
UQ(:, k)
−JUQ(:, k)

] [
VQ(k, :) −VQ(k, :)

]
,

where r = rank(B+C) and s = rank(B−C). In this form, it is clear that each rank 1

term in M has BMC symmetry. Furthermore, if we view M as the discretization of

the BMC function f̃ , then the SVD separates the decomposition into two matrices:

the even-symmetric part of f̃ is associated with the SVD of APP , and the odd-

antisymmetric part of f̃ is associated with the SVD of AQQ. We can find the SVD of

M by operating independently on APP and AQQ.

A.2 The SVD for BMC Functions

The results for the discrete case parallel results in the continuous setting discussed in

Section 3.3, and this can be used to find an explicit expression of the SVD for BMC

functions. Here, we consider the BMC-I function f̃(λ, θ) defined in (3.1), noting that

an equivalent result holds for a BMC-II function derived from the disk via (3.4). Note

that there is a significant distinction between the SVD of the BMC function f̃ and
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the weighted SVD of the function f associated with f̃ and defined on the sphere. A

discussion of the weighted SVD for f can be found in Section 4.2.5.

If f̃(λ, θ) is a BMC function with (λ, θ) ∈ [−π, π]2 that is Lipschitz continuous in

both variables, then the SVD of f̃ converges absolutely and uniformly to f̃ . Then, f̃

can be written as [53]

f̃(λ, θ) =
∞∑
j=1

σjuj(θ)vj(λ), (λ, θ) ∈ [−π, π]2, (A.8)

where σ1, σ2, . . . is a nonnegative and nonincreasing sequence called the singular val-

ues, {u1, u2, . . .} and {v1, v2, . . .} are two sets of orthonormal functions on L2([−π, π]),

as discussed in Section 2.2.2.

We may equivalently write the SVD of f̃ as a decomposition,

f̃ = UΣV T , (A.9)

where U(θ) = [u1(θ) |u2(θ) | · · · ] and V (λ) = [v1(λ) | v2(λ) | · · · ] are [−π, π] × ∞

quasimatrices, and Σ = diag(σ1, σ2, . . .) is a diagonal matrix.

By (3.15), we can express f̃ as a sum involving f+ = p+ q and f – = p− q, where

p and q are defined in (3.1). Since these functions are also Lipschitz continuous in

both variables, we can write the SVDs of f+ and f – as f+ = U+Σ+(V +)T and f – =

U –Σ–(V –)T , respectively. Here, the columns of U+, U –, V +, and V – are orthonormal

with respect to the L2([−π, π]) inner-product. Letting J be the reflection operator

defined in Lemma 3.2 and carefully amalgamating the SVDs of f+ and f – together

as in (A.6), we obtain the decomposition[
p q

J q J p

]
=

[ √
2
2
U+

√
2
2
U –

√
2
2
J (U+) −

√
2
2
J (U –)

][
1
2
Σ+

1
2
Σ–

][√
2
2
V +

√
2
2
V –

√
2
2
V + −

√
2
2
V –

]T
, (A.10)

which is the SVD of f̃ , up to a reordering of the singular values and corresponding
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singular vectors so that the singular values are in nonincreasing order. By uniqueness

of the SVD, (A.10) is the same as (A.8). Therefore, any rank 1 term in (A.8) must

take the form

σjujvj = σj

[
u

±J (u)

] [
v ±v

]
= σj

[
uv ±uv

±J (uv) J (uv)

]
,

and is itself a BMC function. Since a sum of BMC functions is also a BMC function,

truncating the SVD of f̃ in (A.8) after K terms gives a rank K approximation to f̃

that preserves BMC structure.

However, the SVD does not always preserve BMC-I (or BMC-II) structure, since

the rank 1 terms need not be constant for θ = 0, θ = ±π. In the case where

f̃(·, 0) = f̃(·,±π) = 0, BMC-I structure is preserved. It is possible, therefore, to

use a related SVD decomposition to construct low rank approximations to f̃ . First,

apply an initial modification step that subtracts a rank 1 term from f̃ to produce

f̃proj, which is a BMC function with zero values along θ = 0 and θ = ±π. This can

be done by choosing

f̃proj(λ, θ)← f̃(λ, θ)− f̃(λ∗, θ) (A.11)

for some λ∗ ∈ [−π, π]. Finding the SVD of f̃proj and adding it to the subtracted rank

1 term in (A.11) gives a low rank approximation to f̃ .

A natural question is whether this results in a better scheme for constructing low

rank approximants than the structure-preserving GE procedure in Chapter 3. When f̃

is nonzero along θ = 0 or θ = ±π, both procedures involve equivalent initial steps, and

then both procedures operate on f̃proj. The SVD does this optimally with respect to

the L2 norm, but it is computationally expensive, requiring O(N3) operations, where

N is the number of samples of f̃ required to resolve f̃ to some desired tolerance. For

reasonably smooth functions, the structure-preserving GE procedure is more efficient
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at a cost of only O(K3 +K2(m+ n)), where K is the numerical rank of the function

(see Section 3.2), and it produces near-optimal approximants to f̃ . As discussed in

Section 3.6, we observe convergence properties in the L2 norm that asymptotically

identical for GE and the SVD.
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APPENDIX B

THE ULTRASPHERICAL SPECTRAL METHOD

In [48], a new spectral method is developed for solving linear ordinary differential

equations (ODEs) of arbitrary differential order. It uses recurrence relationships

between the ultraspherical polynomials and their derivatives [47, (18.9.19), (18.9.21)]

to develop sparse representations for differential operators. As the order of the

differential operator increases, the ultraspherical parameter changes, too. For this

reason, the method also includes tridiagonal conversion operators that are based

on ultraspherical polynomial recurrence relationships [47, (18.9.7), (18.9.9)]. Use of

these operators leads to linear systems involving almost-banded matrices, meaning

that they are banded everywhere except for the first K rows, which are dense (an

example is depicted in Figure B.1). Here, K is the number of boundary conditions

prescribed with the differential equation. The structure of this system facilitates

the use of an algorithm based on QR factorization through Givens rotations that is

numerically stable, regardless of the system’s size or the differential order of the ODE.

In this section, we describe the ultraspherical spectral method by using it to

discretize a general linear second-order ODE. We apply these results in Section 5.2

to formulate an optimal complexity solver for Poisson’s equation on the disk.
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Discretization

Consider the following second-order linear ODE:

∂2u

∂x2
+ a(x)

∂u

∂x
+ b(x)u = f, x ∈ [−1, 1], (B.1)

with boundary conditions prescribed as u(−1) = α, u(1) = β. If u is continuous

with bounded variation on [−1, 1], then the solution u(x) can be represented by a

Chebyshev series,

u(x) =
∞∑
k=0

ukTk(x), (B.2)

where Tk(x) is the Chebyshev polynomial of degree k. The solution to (B.1) is

completely characterized by the set of Chebyshev coefficients, {uk}∞k=0, and this is the

form of the solution we will seek. Let u be an infinite vector of these coefficients, i.e.,

u = [u0, u1, · · · ]T . Likewise, define the infinite vector f as the vector of Chebyshev

coefficients for f(x).

To discretize (B.1), we must define differentiation operators D1 and D2 that act

on u. By using recurrence relations between the ultraspherical polynomials, we can

formulate D1 and D2 so that they are sparse.

The ultraspherical polynomials are orthogonal polynomials on the interval [−1, 1].

They are denoted by C
(λ)
k , where each set C

(λ)
k is orthogonal with respect to the weight

function (1 − x2)λ−1/2. In addition to the Chebyshev polynomials, we will make use

of the ultraspherical polynomials where λ is chosen as a positive integer. These can

be defined uniquely via the normalization of the leading coefficient, so that

C
(λ)
k (x) =

2k(λ)k
k!

xk +O(xk−1), x ∈ [−1, 1], λ = 1, 2, . . . , (B.3)

where (λ)k is the Pochhammer symbol, i.e.,
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(λ)k =
(λ+ k − 1)!

(λ− 1)!
.

The Chebyshev polynomials of the second kind are produced when λ = 1. A

useful recurrence relation exists between the Chebyshev polynomials of the first and

second kinds, and there is a generalized recurrence relation between the ultraspherical

polynomials with λ ∈ Z+ [47, (18.9.19), (18.9.21)]. These are respectively given as

follows:

dTk
dx

=

{
kC

(1)
k−1, k ≥ 1,

0, k = 0,

dC
(λ)
k

dx
=

{
2λC

(λ+1)
k−1 , k ≥ 1,

0, k = 0.
(B.4)

Applying (B.4) to (B.2), we find

du

dx
=
∞∑
k=1

kukC
(1)
k−1(x),

dλu

dxλ
= 2λ−1(λ− 1)!

∞∑
k=λ

kukC
(λ)
k−λ(x), (B.5)

where {uk} are the Chebyshev coefficients in (B.2), and we have applied the gen-

eralized recurrence relation repeatedly to find dλu/dxλ. We use these to create the

differentiation operators D1 and Dλ. The first equation in (B.5) gives the operator

D1 =


0 1

0 2
0 3

. . .
. . .
. . .

 , (B.6)

and the second equation in (B.5) gives

Dλ = 2λ−1(λ− 1)!



λ times︷ ︸︸ ︷
0 · · · 0 λ

. . . λ+ 1
. . . λ+ 2

. . .
. . .
. . .


. (B.7)
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When D1 is applied to u, the result is an infinite vector of the C(1) coefficients of

u′(x). Similarly, the λ-order differentation operator Dλ finds the C(λ) coefficients of

the λth derivative of u(x).

For the purposes of discretizing (B.1), we require the differentiation operator D2.

Using (B.7), we have

D2 = 2


0 0 2

0 3
0 4

. . .
. . .
. . .

 . (B.8)

At this point, consider a simplified example of the differential equation (B.1) where

a(x) = b(x) = 1. Discretizing this equation with the given differentiation operators,

we find that

D2u︸︷︷︸
C

(2)
basis

+ D1u︸︷︷︸
C

(1)
basis

+ u︸︷︷︸
Chebyshev basis

= f︸︷︷︸
Chebyshev basis

. (B.9)

Each term in (B.9) is an expression of coefficients associated with various ultras-

pherical basis expansions. To represent every term using the same basis expansion,

conversion operators are used. Using the following recurrence relationships [47,

(18.9.7), (18.9.9)],

Tk =


1
2

(
C

(1)
k − C

(1)
k−2
)
, k ≥ 2,

1
2
C

(1)
1 , k = 1,

C
(1)
0 k = 0,

Cλ
(k) =


λ

λ+k

(
C

(λ+1)
k − C(λ+1)

k−2
)
, k ≥ 2,

λ
λ+1

C
(λ+1)
1 , k = 1,

C
(λ+1)
0 k = 0,

(B.10)

we derive the following conversion operators:
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S0 =


1 0 −1

2
1
2

0 −1
2

1
2

0 −1
2

. . .
. . .

 , Sλ =


1 0 − λ

λ+2
λ
λ+1

0 − λ
λ+3

λ
λ+2

0 − λ
λ+4

. . .
. . .

 .
(B.11)

We can use S0, for example, to convert a vector of Chebyshev coefficients into C(1)

coefficients: since u contains the Chebyshev coefficients of u(x), S0u expresses the

C(1) coefficients for u(x). Similarly, Sλ is used to convert C(λ) coefficients into C(λ+1)

coefficients.

Using these conversion operators, the simple case of (B.1) where a(x) = b(x) = 1

can now be expressed in the C(2) basis as follows:

(D2 + S1D1 + S1S0)u = S1S0f .

Now suppose that a(x) and b(x) are arbitrary continuous functions of bounded varia-

tion on the interval [−1, 1]. If b(x) is sufficiently smooth [74, Ch. 7, 8], the Chebyshev

coefficients for b(x) decay rapidly. Since we are ultimately interested in approximating

b to within some desired tolerance ε, we consider the truncated Chebyshev expansion

of b(x) to m terms, where m satisfies the following:∣∣∣∣∣
∣∣∣∣∣b(x)−

m−1∑
k=0

bkTk(x)

∣∣∣∣∣
∣∣∣∣∣
L
∞
([−1,1])

< ε.

Define b as an infinite vector where the first m entries are the first m Chebyshev

coefficients for b(x), and the remaining entries are zeros.

The product b(x)u(x) can be expressed as a Chebyshev series,

b(x)u(x) =
∞∑
j=0

∞∑
k=0

bjukTj(x)Tk(x) =
∞∑
k=0

ckTk(x), (B.12)

and we seek an efficient method for deriving the vector c = [c0, c1, c2, · · · ]T . In [48],

it is shown that
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ck =

{
b0u0 + 1

2

∑∞
j=1 bjuj, k = 0,

1
2

∑k−1
j=0 bk−juj + b0uk + 1

2

∑∞
j=1 bjuj+k + 1

2

∑∞
j=0 bj+kuj, k ≥ 1.

(B.13)

To reveal the structure inherent in (B.13) more clearly, we write it as a product

between the vector u and the sum of a Toeplitz and almost Hankel matrix:

M0[b]u =
1

2





2b0 b1 b2 b3 · · ·
b1 2b0 b1 b2

. . .

b2 b1 2b0 b1
. . .

b3 b2 b1 2b0
. . .

...
. . .

. . .
. . .

. . .


+



0 0 0 0 · · ·
b1 b2 b3 b4 . .

.

b2 b3 b4 b5 . .
.

b3 b4 b5 b6 . .
.

... . .
.
. .
.
. .
.
. .
.







u0
u1
u2
u3
u4
...


. (B.14)

The matrix M0[b] is an operator for multiplying by b(x). The subscript relates to the

fact that M0[b] is an operator on vectors of Chebyshev coefficients. The matrix M0[b] is

banded with a bandwidth µ, where µ is the number of essentially nonzero Chebyshev

coefficients needed to approximate b(x) within some specified tolerance.

To develop an operator for multiplying by a(x) as in (B.1), recall that D1u in (B.9)

gives the C(1) coefficients for u′(x). For multiplication to be meaningful, we must

express a(x) as an expansion in the C(1) basis. Since this method can be generalized

to ODEs of any differential order, we consider the more general case, replacing C(1)

with C(λ). Given two functions expressed as

a(x) =
∞∑
j=0

ajC
(λ)
j (x), v(x) =

∞∑
k=0

vkC
(λ)
k (x),

we seek the coefficients of the product

a(x)v(x) =
∞∑
j=0

∞∑
k=0

ajvkC
(λ)
j (x)C

(λ)
k (x). (B.15)

Applying a linearization formula given by Carlitz [14], it can be shown that a(x)v(x)

is equivalent to applying a multiplication operator Mλ[a] to the vector v, where the

(j, k)th entry of Mλ[a] is given by
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Mλ[a]j,k =
k∑

s=max(0,k−j)

a2s+j−kc
(λ)
s (k, 2s+ j − k), j, k ≥ 0, (B.16)

and

c(λ)s (j, k) =
j + k + λ− 2s

j + k + λ− s
(λ)s(λ)j−s(λ)k−s
s!(j − s)!(k − s)!

(2λ)j+k−s
(λ)j+k−s

(j + k − 2s)!

(2λ)j+k−2s
. (B.17)

A numerically stable alternative to (B.17) is given in [48], as well as a recurrence

relation enabling computational efficiency in the calculation.

Using the operators defined by (B.13) and (B.17), we can now discretize a gener-

alized expression of (B.1) in the following way:

∂2u

∂x2
+ a(x)

∂u

∂x
+ b(x)u = f −→

(
D2 + S1M1[a]D1 + S1S0M0[b]

)︸ ︷︷ ︸
= L

u = S1S0f . (B.18)

The differential operator L is a banded matrix, with a bandwidth determined by

the maximum number of nonzero entries in a or b, or the differential order of the

equation, if it is larger. The discretization of the ODE (B.1) can be written compactly

as the linear system Lu = S1S0f .

The boundary conditions must also be included in the discretization. The bound-

ary conditions are given by u(−1) = α and u(1) = β. Using (B.2) and observing that

for all k, Tk(−1) = (−1)k, and Tk(1) = 1, we find

u(−1) =
∞∑
k=0

uk(−1)k = α, u(1) =
∞∑
k=0

uk = β.

These two equations can be expressed succinctly as follows:

[
1 −1 1 −1 · · ·
1 1 1 1 · · ·

]
u0
u1
...
...

 =

[
α
β

]
. (B.19)

To practically implement (B.18), the system is truncated to form an n × n linear
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x

u

Figure B.1: Left: The left-hand side of the n × n linear system representing
the discretization of the boundary value problem, ∂2u/∂x2 − xu = 0, u(−1) =
Ai(− 3

√
1/ε), u(1) = Ai( 3

√
1/ε), where ε = 1 × 10−5, and Ai are the Airy functions.

This is called Airy’s equation. Here, n = 34 and there are 223 nonzero entries. The
two dense upper rows are the result of the boundary conditions. The final system
used to compute the solution to machine precision will be similarly sparse, but of size
n = 258. Right: The solution to the boundary value problem. The L2 norm of the
error for the solution is O(10−14).

system. To include the boundary conditions, we use the boundary bordering tech-

nique [50]. Observing that D2 contains only zeros in its last two rows, this method

proceeds by replacing the last two rows of the system in (B.18) with (B.19). We also

permute these rows to the first two rows of the new system, so that the final linear

system takes the form
1 −1 1 −1 · · · (−1)n−1

1 1 1 1 · · · 1

PL



u0
u1
...

un−2
un−1

 =


α
β

P (S0S1f)

 , (B.20)

where P is the projection operator that removes the final two rows (entries) of the

matrix (vector) it is operating on. The resulting system of equations is almost-banded.

By this, we mean that excepting the top two rows, which are dense, the system is
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banded. An example of the structure is given in Figure B.1. There are efficient and

numerically stable ways to solve such a system, such as the adaptive QR algorithm

described in [48]. Solving (B.20) yields the vector un, which contains approximations

to the first n Chebyshev coefficients for u(x).

The ultraspherical spectral method has been implemented within Chebfun as a

part of a generalized solver for linear ODEs with variable coefficients, and it is also

crucial to a new method that automates the solving of a large class of linear PDEs [66].

In Diskfun, the ultraspherical spectral method is implemented within the poisson

command to formulate an optimal complexity solver for Poisson’s equation on the

disk (see Section 5.2).


