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New numerical methods using rational functions are presented for applications

in linear algebra and signal processing. Classical results from Zolotarev are

applied to develop a collection of low rank methods and theoretical results

for computing with matrices that have special displacement structures using

the alternating direction implicit (ADI) method. This includes a new low rank

method for solving Sylvester and Lyapunov matrix equations with right hand

sides that have decaying singular values, spectrally accurate low rank solvers

for certain elliptic partial differential equations with smooth right-hand sides,

and explicit bounds on the singular values of special families of structured ma-

trices.

Methods from conformal mapping and adaptive rational approximation are

applied to build approximate solutions to Zolotarev’s problem on sets where

solutions are not known. This leads to new bounds on the numerical ranks

of matrices, and it generalizes the regime in which ADI-based methods can be

applied. The approximate solutions supply quasi-optimal ADI shift parameters

for solving Sylvester matrix equations.

A superfast rank-structured solver for Toeplitz linear systems is designed

with ADI-based compression methods, and theoretical arguments are supplied

that justify the effectiveness of rank-structured solvers for Toeplitz and related

linear systems. The solvers are competitive with the state of the art, and ratio-

nal approximation arguments are used to derive explicit error bounds on the



numerical ranks of important submatrices for various weakly admissible hier-

archical formats.

A data-driven rational approximation framework is developed for recon-

structing signals from samples with poorly separated spectral content. This

approach combines a variant of Prony’s method with a modified version of

the AAA algorithm to construct representations of signals in both frequency

and time space. The approximation methods are automatic and adaptive, re-

quiring no tuning or manual parameter selection, and they are robust to var-

ious forms of corruption, including additive Gaussian noise, perturbed sam-

pling grids, and missing data. A collection of algorithms and an accompany-

ing software package for adaptively computing with these representations is

introduced that includes procedures for differentiation/integration, rootfind-

ing/polefinding, convolution, filtering, extrapolation, and more.
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CHAPTER 1

INTRODUCTION

This thesis develops numerical methods for a range of applications in compu-

tational mathematics where approximations by rational functions are useful.

This includes theoretical and algorithmic advancements for low rank and rank-

structured methods in numerical linear algebra, low rank spectral methods for

solving certain partial differential equations (PDEs), as well as data-driven uni-

variate methods for computing with functions, signals and nonlinear models.

A central goal of this work is to translate ideas from approximation theory into

computational tools for the wider scientific community. With this in mind, the

major ideas in this thesis have been co-developed with open source software

that is publicly available [40, 175].

Chapters 2-4 expand upon classical ideas that link rational approximation

theory to the notion of displacement structure in numerical linear algebra. A

collection of low rank methods and theoretical results is developed for com-

puting with matrices with special displacement structures. This includes low

rank approximation methods, explicit bounds on the singular values of these

matrices, and methods for solving matrix equations and linear systems that

involve these matrices. The main workhorse of this approach is an iterative

method known as the alternating direction implicit (ADI) method, which has

convergence properties that are explained by a rational approximation prob-

lem (see Section 1.5). A collection of key reference papers have been central

to the development of these chapters and provide a good overview of the top-

ics involved. This includes the survey paper on Sylvester and related matrix

equations from Simoncini in [151], a collection of fundamental papers introduc-
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ing the ADI and factored ADI methods [21, 105, 107, 109, 127], Beckermann

and Townsend’s paper on the singular values of matrices with low displace-

ment rank [20], Achieser’s texts on approximation theory and Zolotarev ra-

tional functions [1, 3], Saff’s overview of applications of logarithmic potential

theory to approximation theory [144], and Ganelius’ papers on the Faber ra-

tionals [58, 59, 60]. Finally, though there are no English translations available

(Achieser provides an English description of the work), the central question

from rational approximation theory that motivates and illuminates our work is

from a paper by Y.I. Zolotarev [182].

In Chapter 2, we develop a new ADI-based method for solving Sylvester and

Lyapunov matrix equations with right hand sides that are numerically of low

rank. We apply this method to develop spectrally accurate low rank solvers for

certain elliptic PDEs with smooth right-hand sides, and we show how it leads to

new bounds for certain families of matrices with numerically low displacement

ranks (e.g., multidimensional Vandermonde matrices).

In Chapter 3, we use methods from conformal mapping and adaptive ra-

tional approximation to build Faber rational functions, which are approximate

solutions to the rational approximation problem that lies at the heart of the ADI

method. These solutions generalize the regime in which ADI-based approaches

for bounding the singular values of matrices can be applied. We describe new

bounds for the singular values of special Vandermonde and Cauchy matrices,

and we show how these solutions supply shift parameters for ADI-based algo-

rithms in more general settings.

In Chapter 4, we apply ADI-based methods to design a collection of super-

fast direct solvers for linear systems Ax = b, where A has a special displace-

2



ment structure. Examples include Toeplitz, Toeplitz+Hankel, and special Van-

dermonde systems. Our methods use displacement structure to characterize

and exploit rank-structured compression properties for matrices related to A by

fast transforms. We combine ADI-based compression with modern numerical

linear algebra techniques, such as inversion methods for hierarchical matrices.

Explicit bounds on the singular values of submatrices arising in these systems

are derived and used to justify weakly-admissible partitioning schemes.

In Chapter 5 we introduce a framework for computing with rational func-

tions within the context of univariate signal processing. Whereas Chapters 2-4

are focused on a particular rational approximation problem in numerical lin-

ear algebra, Chapter 5 develops data-driven rational approximation methods

that require little a priori knowledge about the underlying process being mod-

eled. We use construction algorithms that are robust against various types of

noise and corruption, and we combine ideas from rational approximation the-

ory and harmonic analysis to develop a collection of automated algorithms for

computing with our representations. Central texts relevant to the developments

in Chapter 5 include several papers on barycentric rational interpolation and

trigonometric rational functions [24, 25, 26, 86, 95], a paper that introduces the

AAA algorithm [119], and several papers concerning the development, analysis,

and practical use of Prony’s method [27, 28, 132, 135, 136]. The spirit of our work

is largely inspired by the Chebfun project [45, 177], and in particular, Trefethen’s

compelling paper about computing with functions instead of numbers [164].
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1.1 Rational functions in computational mathematics

Rational and polynomial functions are a central part of both computational

mathematics [5, 24, 88, 52, 142] and approximation studies more generally [1,

66, 145] (see [163, Ch. 23] for an overview). Trefethen, quoting Kirchberger,

observes that when we limit our toolbox of mathematical capabilities to the

machine arithmetic operations, the functions we can produce are polynomials

and rationals [163, p.197]. It is no wonder then that polynomial and rational

functions arise constantly in the development and analysis of numerical meth-

ods. This observation is nowhere more potent than in numerical linear algebra,

where we have precious few tricks up our sleeves for computing with matrices

and tensors, and performing even the basic arithmetic operations (matrix-vector

products and solving linear systems) can be prohibitively expensive. Under-

standing the convergence behaviors of rational and polynomial approximations

to functions is critical for efficiently carrying out fundamental tasks, such as

computing eigenvalues (e.g., Rayleigh quotients [65], rational filters [130, 178]),

evaluating functions of matrices (e.g., computing the square roots and exponen-

tials of matrices [61, 88]), and solving linear systems (e.g., via (rational) Krylov

methods [23, 142]). When fast shifted matrix-vector products are available for a

matrix A, the construction of polynomials and their evaluation at A is a natural

way to develop algorithms. Rational functions become useful when one also

has the ability to efficiently solve shifted linear systems involving A.

In this work, we focus on settings where global approximation methods

are desirable for approximating functions with singularities. Rationals often

outshine their polynomial counterparts in exceptionally powerful ways in this

regime. For example, rational approximations to the function f(x) = |x|

4



on [−1, 1] can achieve convergence rates in the infinity norm that are root-

exponential in the degrees of freedom, whereas the rate attainable by polyno-

mials is only O(1/m), where m is the degree of the polynomial [163, Ch. 25].

This convergence rate is also achievable by rationals when approximating func-

tions with more complicated singularities, such as f(x) =
√
x on [0, 1], which

has a branch cut just off the interval of approximation [166]. In Figure 1.1 we

show rational (black) and polynomial (purple) approximations to a characteris-

tic function with jump discontinuities. Using the best polynomial approxima-

tions as measured in the infinity norm on [0, 1), the ringing error around the

singularity decays at only an algebraic rate with respect to distance from the

singularity [163, Ch. 9]. In contrast, there are rational approximations to f with

errors that decay exponentially fast as one moves away from the singularity.
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Figure 1.1: Left: Rational (black) and polynomial (purple) approximations to
the characteristic function for the interval I = [1/4, 3/4] are plotted on [0, 1].
Right: The error in the approximation is plotted on a logarithmic scale against
evaluation points x ∈ [0, 1).

In the context of linear algebra and the evaluation of functions of matrices,

the dichotomy between rationals and polynomials is a natural one to consider,

and this dissertation is largely focused on applications in numerical linear al-

gebra. However, in Chapter 5 we develop data-driven rational approximation

methods for the reconstruction of univariate signals. In this context, it makes
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sense to consider the trade-offs between rational models and other nonlinear or

quasi-nonlinear models, such as those involving splines [42] or piecewise poly-

nomials [125], radial basis functions (RBFs) [173], or wavelets [43]. The devel-

opment and analyses of these methods are often closely connected [43, 169], and

for particular tasks, the various benefits of each should be considered carefully.

For example, a simple spline can be used to recover Figure 1.1 exactly, and in

applications where all of the functions of interest are of this type, it may be that

splines are more beneficial than rationals. As a general–purpose method for the

automatic reconstruction of signals with wide-ranging behaviors, we find that

rationals perform exceptionally well. We make extensive use of several of their

less-heralded properties, including their connection to exponential sums, finite

difference equations, and Hankel operators [27, 132], their representation in a

form that is numerically stable to evaluate [8, 25, 51, 87], their use as a means

for filtering noise [170], and their global properties (e.g., the locations of their

poles), which can be used to detect and identify singularities [27, 166]. A major

advantage of the rational approximation schemes that we apply in Chapter 5 is

that unlike many schemes involving wavelets, RBFs, rationals, and windowing

functions, our methods are data–driven. They do not involve tuning parameters

(e.g, mother/father wavelets [43], shape parameters [173], etc), and they require

no a priori knowledge about the expected locations or types of singularities.

Before turning to the development of general purpose univariate rational ap-

proximation methods in Chapter 5, we focus in Chapters 2-4 on a particularly

important rational approximation problem that arises in numerical linear alge-

bra in connection to the low rank properties of matrices with special displace-

ment structures. The remainder of this chapter reviews the relevant material.
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1.2 Low rank matrix approximation

Let X ∈ Cm×n. We are often interested in finding a low rank matrix Y such that

the distance between X and Y is small in a norm of interest. For the operator

and Frobenius norms, ∥ · ∥2 and ∥ · ∥F , respectively, the singular values of X

completely characterize the extent to which this is possible. The singular value

decomposition (SVD) of X is given by UΣV ∗, where U ∈ Cm×m, V ∈ Cn×n are

unitary, [·]∗ denotes conjugate transposition, Σ ∈ Cm×n is diagonal with entries

Σjj = σj(X), and σ1(X) ≥ σ2(X) ≥ · · · ≥ σmin{m,n}(X) ≥ 0 are the singular

values of X . As the following theorem shows, the best rank ≤ k approximation

to X is given by XSV D
k = U( : , 1 : k)Σ(1 : k, 1 : k) [V (: 1 :k)]∗, where the column

indexing follows MATLAB’s convention (e.g., U( : , J), J ⊂ {1, . . . , n}, is the

submatrix of U consisting of the columns indexed by the set J).

Theorem 1. (Eckart-Young-Mirsky Theorem) Let X, Yk ∈ Cm×n, rank(Yk) = k.

Then,

σk+1(X) = ∥X −XSV D
k ∥2 ≤ ∥X − Yk∥2,√√√√min{m,n}∑

j=k+1

σ2
j (X) = ∥X −XSV D

k ∥F ≤ ∥X − Yk∥F .

Proof. See [65, sec. 2.5.3].

In many problems, a tolerance parameter 0 < ϵ < 1 is supplied, and one

must determine the smallest k such that there is Yk satisfying ∥X−Yk∥2 ≤ ϵ∥X∥2.

We refer to this as the ϵ-rank of X . Applying Theorem 1, it can be formally

defined using the singular values of X in the following way:

Definition 1. Let X ∈ Cm×n, m ≥ n, with 0 < ϵ < 1 given. The ϵ-rank of X , denoted

by rankϵ(X), is the smallest integer k ≥ 0 such that σk+1(X) ≤ ϵ ∥X∥2.

7



In Figure 1.2, we illustrate how the ϵ-rank of X can easily be interpreted

from a plot of its singular values. When (m + n) ≤ mn, we say that X is of

low numerical rank with respect to ϵ. While the ϵ-rank of a matrix is most reli-

ably determined computationally using the SVD, this is usually too expensive

(O(n3) operations when m = n) to be practically useful. Alternative methods

include the randomized SVD [79], iterative methods (e.g., Lanczos bidiagonal-

ization [65, Ch. 10]) as well as methods based on various rank-revealing fac-

torizations [72]. In Chapters 2 and 4, we develop low rank methods for impor-

tant families of matrices that have special displacement structures (e.g., Toeplitz,

Vandermonde, and Cauchy matrices). Using rational approximations, the sin-

gular values of these matrices can be bounded explicitly, so that good estimates

for their ϵ-ranks are known outright. Moreover, the bounds can be derived in a

constructive fashion that leads to efficient low rank approximation methods.

5 10 15

10
-15

10
-10

10
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10
0

ϵ = 10−10

σ
k
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σ
1
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)

k
Figure 1.2: The first 17 normalized singular values of a 100 × 100 matrix C are
plotted on a logarithmic scale against the indices of the singular values. C is a
full rank matrix, but it is well-approximated by low rank matrices. The singular
values show that for ϵ = 10−10, rankϵ(C) = 9.
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1.3 Matrices with displacement structure

A matrix X that satisfies the Sylvester matrix equation

AX −XB = F, X, F ∈ Cm×n, A ∈ Cm×m, B ∈ Cn×n, (1.1)

is said to have displacement structure, with an (A,B)–displacement rank of

ρ = rank(F ). In many applications, ρ = 1 or 2, and X is said to be of low

displacement rank. Many important matrix families in computational mathe-

matics, including Toeplitz (ρ = 2), Hankel (ρ = 2), Vandermonde (ρ = 1), and

Cauchy (ρ = 1) matrices, have low displacement rank. In [19], this property

is used to explain why certain matrices (including Löwner, Pick, Cauchy, real

Vandermonde, and real positive definite Hankel), are of low numerical rank.

In addition to low rank properties related the displacement structure of X , a

wealth of literature has been developed around exploiting algebraic structures

inherited from (1.1). These have been used, for example, to formulate efficient

solvers for linear systems involving X [63, 83, 96].

We denote by λ(A) and λ(B) the spectra of A and B, respectively. Existence

and uniqueness of X is guaranteed whenever λ(A) ∩ λ(B) is empty [91, Thm.

4.4.6]. There are several ways to express X in closed form, including via re-

solvents, integrals of exponentials, power sums, and as a Neumann series (see

the survey [151] for an overview). However, X usually cannot be computed

directly from these forms due to stability and/or cost issues. A basic way to

compute X is to reshape (1.1) and solve the equivalent mn ×mn linear system

Ax = f , where x and f are the column-major vectorizations of X and F , respec-

tively. Here, A = In ⊗A−BT ⊗ Im, where ⊗ is the Kronecker product operator

and Im is the m × m identity matrix. Another direct solver, especially useful

when A and B are dense, is the O(m3 + n3) Bartels–Stewart method [64]. In

9



this approach, the Schur factorizations of A and B are computed, and then a

forward/backward-substitution scheme is used to compute the entries of X .

In most practical applications where (1.1) appears, such as in the discretiza-

tion of PDEs [53, 159, 176] or in stability analysis for dynamical systems [5, 73,

128], A and B are sparse and/or structured (e.g. banded, banded+low rank),

and F is low rank. Large problem dimensions can make it infeasible to di-

rectly store X , which is typically dense, let alone apply expensive direct solvers

to (1.1). Instead, practitioners turn to iterative low rank approximation methods

that can take advantage of the structures inA,B and F . These primarily include

methods based on (rational) Krylov subspace projection [47, 150, 151] and meth-

ods based on the factored alternating direction implicit (fADI) [21, 128, 143, 107],

though there are others [22, 126]. Of course, low rank approximation methods

are only effective when X has low numerical rank. In the next section, we use

the fADI algorithm to illustrate how the properties of A,B and F relate to the

numerical rank of X . We remark that there are many ways to see this con-

nection: In the important case where (1.1) is a Lyapunov matrix equation (i.e.,

B = −A∗, F = F ∗), various arguments with qualitative bounds on the singular

values of X [6, 17, 69, 143, 104, 151] have been used to justify low rank methods.

1.4 The ADI method

The ADI algorithm is an iterative method that numerically solves (1.1) by

alternately updating the column and row spaces of an approximate solu-

tion [109, 127]. It is the main workhorse for most of the methods described in

Ch. 2 and 4 of this thesis, and is fundamentally connected to the central rational

10



approximation problem of interest in these chapters via its error equation.

One ADI iteration consists of the following two steps:

1. Solve for X(j+1/2), where

(
A− βj+1I

)
X(j+1/2) = X(j)

(
B − βj+1I

)
+ F. (1.2)

2. Solve for X(j+1), where

X(j+1)
(
B − αj+1I

)
=
(
A− αj+1I

)
X(j+1/2) − F. (1.3)

An initial guess, usually X(0) = 0, is required to begin the iterations. The

construction of X(k) requires selecting a set of k 2-tuples, {(αj, βj)}kj=1, referred

to as shift parameters.

1.4.1 Deriving the ADI iteration

To derive the ADI iteration from first principles, we first observe that for any

pair of real numbers (α, β), it is true that

(A− βIm)X(B − αIn)− (A− αIm)X(B − βIn) = (β − α)F. (1.4)

This leads to a natural iteration:

X(j+1)(B−αIn) = (β−α)(A−βIm)−1F+(A−βIm)−1(A−αIm)X(j)(B−βIn). (1.5)

Now we observe that

(β − α)(A− βIm)−1 = −I + (A− αIm)(A− βIm)−1, (1.6)

11



and substitute this into (1.5). As a result, we have that

X(j+1)(B−αIn) = −F+(A−αIm)(A−βIm)−1F+(A−βIm)−1(A−αIm)X(j)(B−βIn).

(1.7)

Now, we choose X(j+1/2) so that

(A− βIm)X(j+1/2) − F = X(j)(B − βIn).

By substituting this expression into (1.7) and observing that (A − αIm) and

(A− βIm)−1 commute, we recover the two-step ADI iteration shown in (1.2)

and (1.3).

The ADI method was originally derived as (and remains widely known as)

an implicit-explicit scheme for numerically solving the heat equation, though

its potential as a solver for the Lyapunov (and then Sylvester) matrix equation

was quickly recognized [127, 171]. ADI can also be viewed as a generalization

of Smith’s method [153].

1.4.2 The fADI method

The fADI method [21], first introduced as Cholesky-factored ADI for the

Lyapunov matrix equation [107], is equivalent to ADI, but computes X(k)

in factored form. The fADI iteration is derived by expressing X(j) in

terms of X(j−1) using (1.2) and (1.3), and then substituting the factorizations

X(j) = W (j)D(j)Y (j)
∗

and F =MN∗, where M ∈ Cm×ρ and N ∈ Cn×ρ, into the

resulting equation. After k iterations, the following block matrices are con-
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structed:

W (k)=

[
Ŵ (1) Ŵ (2) · · · Ŵ (k)

]
,


Ŵ (1) = (A− β1I)−1M,

Ŵ (j+1) = (A− αjI)(A− βj+1I)
−1Ŵ (j),

(1.8)

Y (k)=

[
Ŷ (1) Ŷ (2) · · · Ŷ (k)

]
,


Ŷ (1) = (B∗ − α1I)

−1N,

Ŷ (j+1) = (B∗ − βjI)(B
∗ − αj+1I)

−1Ŷ (j),

(1.9)

D(k) = diag
(
(β1 − α1)Iρ, . . . , (βk − αk)Iρ

)
. (1.10)

Using fADI, one clearly sees that after k iterations, the rank of the approxi-

mant X(k) is at most kρ. By Theorem 1, we conclude that

σkρ+1(X) ≤ ∥X −X(k)∥2, 0 ≤ kρ < n− 1. (1.11)

Bounds on the numerical rank of X can be attained by bounding the infimum

of the set {∥X − X(k)∥2, X(k) ∈ M(k)(A,B, F )}, where M(k)(A,B, F ) is the

collection of all possible matrices that can be constructed by applying k steps of

ADI (or, equivalently, fADI) to (1.1).

1.4.3 The ADI error equation

Using (1.2) and (1.3), one finds that the ADI error equation can be expressed as

X −X(k) = rk(A)(X −X(0))rk(B)−1, rk(z) =
k∏

j=1

z − αj

z − βj
, k ≥ 1. (1.12)

Assuming that X(0) is chosen as the zero matrix, it follows that

∥X −X(k)∥2 ≤ ∥rk(A)∥2 ∥rk(B)−1∥2∥X∥2. (1.13)
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To minimize the bound on ∥X − X(k)∥2, ADI shift parameters {(αj, βj)}kj=1 are

sought that minimize ∥rk(A)∥2∥rk(B)−1∥2. When A and B are normal matrices,

we have that

∥rk(A)∥2 ∥rk(B)−1∥2 ≤ sup
z∈E
|rk(z)| sup

z∈G

1

|rk(z)|
=

supz∈E |rk(z)|
infz∈G |rk(z)|

, (1.14)

where λ(A) ⊂ E, λ(B) ⊂ G. In the general case, E and G can be taken as sets

containing the fields of values of A and B, respectively. Then, we have by [39]

that

∥rk(A)∥2 ∥rk(B)−1∥2 ≤ (1 +
√
2)2

supz∈E |rk(z)|
infz∈G |rk(z)|

. (1.15)

Bounds involving other spectral sets and measures of nonnormality for A and

B can also be applied [12, 19]. Unless otherwise specified, we assume for con-

venience throughout the text that A and B are normal matrices.

1.5 Zolotarev’s third problem

The bounds in (1.14) and (1.15) let us approach the problem of finding optimal

ADI shift parameters with tools from rational approximation theory. Specifi-

cally, we seek the rational function that attains the following infimum:

Zk(E,G) := inf
r∈Rk

supz∈E |r(z)|
infz∈G |r(z)|

, (1.16)

where Rk is the space of all rational functions with numerators and denomina-

tors both of degree ≤ k. The number Zk is referred to as the kth Zolotarev num-

ber associated with sets E and G, and a rational function in Rk that attains the

infimum in (1.16) is called a Zolotarev rational function. The names are in honor

of Y.I. Zolotarev, a student of Chebyshev who first posed (and subsequently

solved) a version of the extremal approximation problem shown in (1.16) [182].
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Among his other achievements, Zolotarev stated and solved 4 famous approx-

imation problems [1, 157]; the one in (1.16) is referred to as Zolotarev’s third

problem.1 The connection between ADI and Zolotarov’s third problem were

first pointed out by Lebedev in [105]. Zolotarev rationals arise in connection to

many other applications, including in digital filter design [106, 75], the compu-

tation of matrix functions and polar decompositions [61, 120], approximation

by sums of exponentials [29], and more.2

The following theorem is a restatement of the main observation in [19,

Thm. 2.1]. It summarizes the links between the ADI error equation, the singular

values of matrices with low displacement rank, and the Zolotarev numbers:

Theorem 2. Let X ∈ Cm×n satisfy the Sylvester matrix equation AX − XB = F ,

where A and B are normal matrices and rank(F ) ≤ ρ. Suppose E and G are sets such

that λ(A) ⊂ E and λ(B) ⊂ G. Then, for k such that 1 ≤ kρ+ 1 ≤ min(m,n),

σkρ+1(X) ≤ ∥X −X(k)
Z ∥2 ≤ Zk(E,G)∥X∥2, (1.17)

whereX(k)
Z is constructed by applying k steps of ADI (or fADI) toAX−XB = F , with

the zeros and poles of the Zolotarev rational function associated with Zk(E,G) used as

the ADI shift parameters.

Proof. The first inequality is given by (1.11). The last inequality follows directly

from (1.14) and the definition of Zk(E,G).

The bound in (1.17) is one instance of the more general result from [19,

1In some literature, the terms ‘Zolotarev number’ or ‘Zolotarev function’ are used in associ-
ation with Zolotarev’s fourth problem.

2Many of these applications concern Zolotarev’s fourth problem, but the third and fourth
problems are mathematically equivalent [94].
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Thm. 2.1], where it is shown that for 1 ≤ kρ+ j ≤ min(m,n),

σj+kρ(X) ≤ Zk(E,G)σj(X). (1.18)

A nice corollary to this result is that Zk(E,G) also bounds the relative error for

the best rank k approximation to X in the Frobenius norm.

Corollary 1. Let A, B, X , and F be as in Theorem 2. If XSV D
ρk is the best rank ρk

approximation to X in the Frobenius norm, then

∥X −XSV D
ρk ∥F ≤ Zk(E,G)∥X∥F .

Proof. See [149, Lemma 4.1].

Corollary 1 is especially valuable in the context of low rank tensor decom-

positions [149]. We remark that theorems similar to Theorem 2 can be stated

for non-normal matrices using (1.15) or bounds based on other K-spectral sets

(see [19, Cor. 2.2]).

Properties of Zolotarev numbers

As a general rule, Zk(E,G) decays rapidly with k whenever E and G are

well-separated from one another, and the rate of decays slows as E and G

are brought closer together. To see why, consider a simple example. Let

E = [10, 20] and let G be an interval disjoint from E. When E and G are closer

together, it requires more degrees of freedom to construct a rational that re-

mains small on E and also becomes large on G. In Figure 1.3, we illustrate

this by plotting the (4, 4) Zolotarev rationals rE4 for (E,−E) and rG
′

4 for (E,G′),

where G′ = [−10, 0]. Notice that maxx∈E |rE4 (x)| < maxx∈E |rG
′

4 (x)| on E and
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minx∈−E |rE4 (x)| > minx∈G′ |rG
′

4 (x)|. The magnitudes of Zk(E,−E) and Zk(E,G
′)

both decay exponentially fast as a function of k, but the rate of decay is slower

for Zk(E,G
′) (see Theorem 3).
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Figure 1.3: Left: The Zolotarev rational functions rE4 (z) associated with (E,−E)
(blue) and rG

′

4 (z) associated with (E,G′) (red) are plotted for z ∈ E. Right:
The rationals rE4 (z) and rG

′

4 (z) plotted for z ∈ −E and z ∈ G′, respectively. The
values of rG

′

4 have been translated to the left by 10 units for comparison’s sake.

In the next lemma, we state several useful properties of Zolotarev numbers.

Lemma 1 (Zolotarev number properties). For setsE andG, the following properties

hold:

(P1) Z0(E,G) = 1,

(P2) Zk(E,G) = Zk(G,E),

(P3) Zk+1(E,G) ≤ Zk(E,G),

(P4) Zk1+k2
(E,G) ≤ Zk1

(E,G)Zk2
(E,G),

(P5) Zk(E1, G1) ≤ Zk(E,G) whenever E1 ⊆ E, G1 ⊆ G,

(P6) Zk(T(E),T(G)) = Zk(E,G), where T is a Möbius transformation.

Proof. See [19, sec. 3].
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1.5.1 Bounding Zolotarev numbers

For general choices of E and G that are disjoint in C, the solution to (1.16) is

unknown. However, the asymptotic behavior of Zk(E,G) is known, along with

a lower bound [66]:

Zk(E,G) ≥ h−k, lim
k→∞

(Zk(E,G))
1/k = h−1, h = exp

(
1

cap(E,G)

)
. (1.19)

Here, cap(E,G) is the capacity of a condenser consisting of plates E and G.

In view of (1.19), upper bounds on Zk(E,G) are sought that take the form

Zk(E,G) ≤ KE,G h
−k, (1.20)

where ideally KE,G is a constant that depends only on the geometry of E and G.

For example, when E and G are intervals on the real line, KE,G = 4 [19]. When

they are disks, KE,G = 1 [154]. In both cases, h is known (see Theorems 3 and 4),

as are closed form expressions of the Zolotarev rationals rk that attain Zk(E,G)

in (1.16). Moreover, the zeros and poles of rk are known and serve as optimal

ADI shift parameters. A summary of known bounds for Zolotarev numbers is

given in Table 1.1. The first three rows of the table are derived from special

cases where Zolotarev’s third problem has been solved exactly. We review the

the first two of these results below. The bounds in the third row are discussed

in Chapter 4, and bounds described in last row are discussed in Chapter 3 along

with bounds for much more general choices of E and G.

Zolotarev rationals on intervals of the real line

Zolotarev’s original solution to (1.16) considers only the case where E and

G = −E are two real intervals symmetric about the origin. In [19], analytic
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Disjoint sets E and G Bound Reference
finite intervals of R Zk(E,G) ≤ 4h−k Theorem 3, [19]

disks in C Zk(E,G) ≤ h−k Theorem 4, [154]
arcs on a circle C Zk(E,G) ≤ 4h−k Theorem 8

convex closed polygons† in C Zk(E,G) ≤ 16h−k +O(h−2k) Theorem 7, [141]

Table 1.1: A collection of known bounds for Zolotarev numbers associated with
various sets E and G. Additional bounds for more general choices of E and G
are discussed Chapter 3 and [141]. † This bound also holds for more general
open convex sets in C (see Chapter 3).

descriptions of Zk([−τ,−1], [1, τ ]), τ > 1, are bounded and then used to derive

explicit bounds on Zk([a, b], [c, d]), where [a, b] and [c, d] are taken to be disjoint,

finite intervals of the real line. We make extensive use of the following theorem3:

Theorem 3. Let k > 0 be an integer and let [a, b] and [c, d] be disjoint intervals on the

real line. Then,

Zk([a, b], [c, d]) ≤ 4h−k ≤ 4µ−2k
0 , µ0 = exp

(
π2

2 log(16γ)

)
, (1.21)

where γ = (|c−a| |d− b|)/(|c− b| |d−a|) is the modulus of the cross-ratio of the points

(a, b, c, d)

Proof. See Cor. 3.2 and Cor. 4.2 in [19].

We remark that a closed form expression for h = exp(1/cap(E,G)) involving

the Grötzsch ring function can be found in [19, Thm. 3.1]. Zolotarev completely

described the rational associated with Zk([−τ,−1], [1, τ ]) by expressing the zeros

and poles of rk using elliptic integrals [182]. A slight generalization of this result

follows directly from (P6) in Lemma 1, and we have the following corollary to

Theorem 3.
3Similar bounds are derived in [143, eq. 2.13] and [29], and related arguments are also found

in [49].
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Corollary 2. Let rk(z) be the Zolotarev rational associated with Zk([a, b], [c, d]), where

[a, b], [c, d] are as in Theorem 3 and γ is the modulus of the cross-ratio of (a, b, c, d).

Then, each zero αj and pole βj of rk is as follows:

αj = T

(
−τ dn

[
2j + 1

2k
K(Ξ),Ξ

])
, βj = T

(
τ dn

[
2j + 1

2k
K(Ξ),Ξ

])
, (1.22)

where τ = −1+2γ+2
√
γ2 − γ, Ξ =

√
1− 1/τ 2, K is the complete elliptic integral of

the first kind [121, 19.2.8], dn(z,Ξ) is the Jacobi elliptic function of the third kind [121,

22.2.6], and T is a Möbius transformation such that T(a) =−τ , T(b) =−1, T(c) = 1,

T(d)=τ .

Proof. This result follows immediately from the solution of Zolotarev’s third

problem in [182] (see [1, Sec. 51] and the invariance of Zk(E,G) under Möbius

transformations (P6 in Lemma 1).

We remark that our software package freeLyap [175] includes a subroutine

that automatically computes ADI shift parameters {(αj, βj)}kj=1 given any two

disjoint intervals on the line. The routine uses MATLAB’s ellipk and ellipj

functions and has a trivial cost.

Zolotarev rationals on disks in the complex plane

The exact solution to Zolotarev’s third problem is known whenE andG are two

disks in the complex plane. Explicit expressions for a special case are supplied

in the next theorem.

Theorem 4. Let E = {z ∈ C : |z − z0| ≤ η}, 0 < η < z0, z0, η ∈ R. Then, the infi-

mum in (1.16) is attained by the rational function

rk(z) =

(
z − ϕ
z + ϕ

)k

, ϕ =

√
z20 − η2, (1.23)
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Figure 1.4: The value of Zk(E,−E) is known [154] when E = {z ∈ C : |z − z0| ≤
η}, with 0 < η < z0. It can be used to bound the singular values of X satisfying
AX −XB = F , where λ(A) ⊂ E and λ(B) ⊂ −E.

and Zk(E,−E) is given by

Zk(E,−E) = µ−k
1 , µ1 = exp

(
1

cap(E,−E)

)
=
z0 + ϕ

z0 − ϕ
. (1.24)

Proof. The proof in Theorem 3.1 in [154] and the related discussion uses the near-

circularity criterion. One can also apply an argument using conformal mapping

(see Section 3.2).

A similar result holds when E and G are general disjoint disks in C. The

expression for Zk(E,G) and the associated rk is more technical. However, as in

Theorem 4, the Zolotarev rational associated with Zk(E,G) has only one pole

and one zero, each of multiplicity k. The optimal strategy for applying ADI in

this case is to repeatedly apply the same shift parameter pair (e.g., (ϕ,−ϕ) in

Theorem 4) at every iteration. This is equivalent to Smith’s method [153]. Our

software package freeLyap [175] includes a routine that automatically computes

the optimal shift parameter pair and the value of Zk(E,G) from the radii and

centers of E and G.
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1.5.2 A comparison with exponential sums

Completely monotonic functions such as 1/x and
√
x on the interval [a, b],

0 < a < b <∞, are well-approximated by exponential sums of the form

Sk(x) =
k∑

j=1

ωje
−tjx, ωj, tj ∈ R.

In [30], explicit bounds on the error ∥1/x− Uk(x)∥L∞([a,b]) are given, where Uk

is the best approximation to 1/x by an exponential sum of at most k terms.

The derivation of these bounds involves the construction of type (k, k−1) ra-

tional approximations to
√
x on [a2, b2], and this in turn is related to rational

approximations of the sign function on [−b,−a] ∪ [a, b],4 i.e., Zolotarev’s fourth

problem [19].

Estimates from exponential sums can be used to bound the singular values

of X ∈ Rn×n, where X satisfies (1.1). Here, we describe how this can be done

and compare it to estimates derived from ADI. To simplify notation, we consider

the Lyapunov equation AX +XAT = BBT , λ(A) ⊂ [a, b], where A ∈ Cm×m is a

normal matrix 5. Let A = In ⊗ A+ A⊗ In. Then, x = A−1b, where x,b ∈ Cn
2×1

are the column-major vectorizations ofX andBBT , respectively. We can use the

fact that Uk(A) ≈ A−1 to approximate X . Applying results from [19] and [30],

we have that ∥∥A−1 − Uk(A)
∥∥
2
≤
Kγk

a
µ−2k
0 , (1.25)

where Kγ is a bounded constant dependent on γ = a/b, and µ0 is as in (1.21).6

4The authors in [30] do not explicitly discuss Zolotarev numbers, but they present a collection
of several fascinating methods for deriving bounds on Zk(E,G).

5This idea and the larger connection between the literature on best approximations by expo-
nential sums and Zolotarev’s results was first brought to my attention by Daniel Kressner.

6In [30], the left-hand side of (1.25) is bounded by an expression involving the Grötszch ring
function [121, (19.2.8)], which is associated with elliptic integrals. The bound we give here uses
instead Theorem 3.
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Let X̃ be the m × m matrix associated with the vectorization x̃ = Uk(A)b.

The property exp(Im ⊗ A+ A⊗ Im) = exp(A)⊗ exp(A) can be used to show that

rank(X̃) ≤ kρ, where rank(BBT ) = ρ. Since ∥X∥F = ∥x∥2, where ∥ · ∥F is the

Frobenius norm, it follows that

σkρ+1(X) ≤
∥∥∥A−1vec(BBT )− Uk(A)vec(BBT )

∥∥∥
2
≤
Kγk

a
µ−2k
0 ∥BBT∥F .

To state a relative bound, we use the estimate 1/∥X∥2 ≤ 2b/∥BBT∥2, so that

σkρ+1(X) ≤ K̃γkµ
−2k
0 ∥X∥2, K̃γ =

2Kγb

a

∥BBT∥F
∥BBT∥2

. (1.26)

From Theorem 2 and Theorem 3, a bound attained via fADI is given by

σkρ+1(X) ≤ 4µ−2k
0 ∥X∥2. (1.27)

We observe that the bounds in (1.26) and (1.27) both achieve the same geometric

decay rate, with the ADI-based bound resulting in a cleaner constant that does

not include a factor of k.

1.5.3 Asymptotically optimal rational functions

For general sets ofE andG in the complex plane, exact solutions to (1.16) remain

unknown. One way to study Zk(E,G) in such a setting is to consider rationals

sk that behave similarly to Zolotarev rationals in an asymptotic sense. We say

that {sk}∞k=1 is a set of asymptotically optimal rational functions if

lim
k→∞

(
supz∈E |sk(z)|
infz∈G |sk(z)|

)1/k

= h−1, h = exp

(
1

cap(E,G)

)
. (1.28)

Logarithmic potential theory supplies a useful framework for studying and

deriving sets of asymptotically optimal rational functions [154, 172]. It has
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been used to derive bounds on Zk(E,G) [66, 174], as well as develop heuris-

tics for generating ADI shift parameters [154] and pole parameters in the ra-

tional Krylov subspace method (RKSM) [47] for solving (1.1) when A, B have

complex-valued spectral sets. The fundamental connection between approxi-

mation theory and electrostatics is that the function log(1/|p(z)|), where p(z) =∏k
j=1(z − zj), can be expressed as a logarithmic potential:

log
1

|p(z)|
=

∫
log

1

|z − t|
dν(t),

where ν is the discrete measure with mass 1 at each of the zeros zj [145] . For

rational functions, − log |p(z)/q(z)| = log |1/p(z)| − log |1/q(z)|. The poles and

zeros of a rational function sk can be viewed as charged particles interacting on

the plates E and G of the condenser (E,G). One ideally seeks an arrangement

of poles and zeros that minimizes |sk(z)| for z on E and |1/sk(z)| for z on G.

Instead of seeking optimal solutions for a fixed k, one can consider the problem

in a distributional sense. With (1.28) in mind, we seek nonnegative and normal-

ized measures ν1 and ν2, where supp(ν1) = E and supp(ν2) = G, such that the

following energy integral is minimized:

I(ν) =

∫ ∫
log

1

|z − t|
dν(z)dν(t), ν = ν1 − ν2. (1.29)

The condenser capacity is defined as cap(E,G) := 1/ infν I(ν) [145]. For some

choices of E and G, this problem can be easily solved. For example, consider

the sets E1 and G1, where E1 is a disk of radius 1, and G1 is an external disk of

radius h > 1. One can show [145] that (1.29) is minimized by choosing ν1 and ν2

such that dν1 = 1/(2π)ds and dν2 = 1/(2πh)ds. This suggests that a reasonable

approximation to the Zolotarev rational rk might be found by choosing sk to

have as its k zeros the kth roots of unity, and as its k poles, the kth roots of unity

scaled by h. We know that in the limit, these points become distributed in a way
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that minimizes (1.29), and this can be used to show that these rationals are in

fact asymptotically optimal [172]. One notes via Theorem 4 that for any fixed k,

this solution is never optimal.

To illustrate how this is useful, consider the case where C\E∪G is a doubly-

connected region. Since cap(E,G) is conformally invariant, we construct the

conformal map Ψ : A → C \E ∪G, whereA is the annulus {1 < |z| < h, z ∈ C}.

The collection of k generalized Fejér points associated with E and G [172] is de-

fined as
{(

Ψ(e2πijt/k),Ψ(he2πijt/k
)}k

j=1
. It was shown by Walsh that if these are

taken to be the zeros and poles of a rational function sk(z), then the sequence

{sk}∞k=1 is asymptotically optimal [172] . A stable method for numerically con-

structing and evaluating the conformal map Ψ is described in [165] (see also

Section 3.3.2).

Another set of asymptotically optimal rationals can be defined using the gen-

eralized Leja points, which are derived recursively from a greedy process [11].

The kth set of generalized Leja points Lk = {(ϕj, ψj)}kj=1 associated with E and

G is constructed so that it has a useful nesting property, Lk ⊂ Lk+1. This

makes generalized Leja points suitable for on-the-fly shift parameter genera-

tion schemes [47]. Defining sk−1 as the type (k−1, k−1) rational with zero-pole

pairs given by Lk−1, one defines Lk = Lk−1 ∪{(ϕk, ψk)}, where (ϕk, ψk) is chosen

so that maxz∈E |sk−1(z)| = |sk−1(ϕk)| and minz∈G |sk−1(z)| = |sk−1(ψk)|. Useful

properties of the generalized Leja points and practical methods for computing

them can be found in [154].

In Chapter 3, we construct a special set of rational functions called the Faber

rational functions. These functions also behave similarly to the Zolotarev ratio-

nal functions, and in fact coincide with them in special cases (see Section 3.1).
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Our results on the behavior of the Faber rational functions are stronger than

asymptotic optimality, since we bound supz∈E |sk(z)|/ infz∈G |sk(z)| explicitly

when sk is a Faber rational and k > N0, whereN0 is known. This leads to explicit

bounds on Zk(E,G) for rather general assumptions on E, G in C. For finite and

relatively small choices of k, the Faber rationals can sometimes greatly outper-

form the Fejér and Leja rationals as an approximation to the Zolotarev rationals

rk. For example, in the case where E and G are taken as disjoint disks in C, the

Fejér and Leja rationals are slow to converge in (1.28) [154, sec. 2], whereas the

Faber rationals are equivalent to rk for all k (see Section 3.1). On the other hand,

these differences appear to be less extreme for other choices of E and G. We

make more comparisons in Section 3.5.2.

1.6 ADI in practice

ADI can be an extremely efficient method for solving AX − XB = F in set-

tings where solutions to Zolotarev’s problem are well-understood. With some

adaptations, ADI can also be applied more broadly. The “ADI-friendliness” of

a given problem can be evaluated using the criteria listed below:

1. A and B are normal matrices,

2. rank(F ) is small,

3. The spectra of A and B are contained in two disjoint and well-separated

sets E and G,

4. A solution to Zolotarev’s problem is known for the sets E and G,

5. Shifted linear solves and matrix-vector products involving A and B cost

O(n) operations.
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For ADI to be effective, criterion 3 is essential, since without it, ADI iterations

may not converge rapidly. When several of the other criteria are also met, we

say that the problem at hand has high ADI-friendliness. It can be beneficial

to design methods for solving problems with ADI-friendliness in mind. For

example, in [53], a spectral method is developed for solving Poisson’s equation

in various geometries. The discretizations involved are intentionally designed

so that they lead to ADI-friendly Sylvester equations, and this in turn allows the

authors to prove that the method has quasi-optimal computational complexity.

When not all of the above criteria are met, the application of ADI requires

some modifications. In some settings, measures of non-normality for A and B

can be bounded so that an explicit bound on ∥X − X(k)∥2 is still possible even

when criterion 1 is not met. In other settings, it may be possible to define E

and G and find optimal ADI shift parameters using K-spectral sets, such as the

fields of values for A and B [19].

When criteria 1 and 3 are met, then explicit bounds on the approximation

error ∥X − X(k)∥2 are given via Theorem 2 and optimal ADI shift parameters

are available. The number of ADI iterations required can be determined a pri-

ori, and ADI hardly resembles an iterative algorithm, since there is no need to

monitor convergence. Truly iterative variants of ADI are sometimes used when

criterion 4 is not met, especially when estimates on the boundaries of E and G

are not available. In this setting, heuristic strategies are applied to choose shift

parameters. This might entail choosing a small set of shift parameters a pri-

ori and then applying them cyclically (the cyclic Smith’s method [153, 128]), or

it may involve adaptively computing shift parameters on the fly at each itera-

tion [47, 151]. Without an explicit error bound, a stopping condition is required,
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which is typically based on monitoring a relative residual (see [151, sec. 4.1]).

When suboptimal shifts are used, ADI can converge poorly, though com-

bining ADI with Galerkin projections can help alleviate this issue [21]. Krylov-

based methods often perform better than ADI in these settings [21, 151]. How-

ever, they are not a silver bullet. The per-iteration costs of these methods in-

creases quickly with the iteration number, and the development of acceleration

strategies is its own challenge [47, 151]. Moreover, these methods can also re-

quire the selection of parameters. For example, the RKSM requires pole param-

eters, and analyses of the error behavior of the method involves bounds that

depend on the ADI error equation [47, 151]. In other words, improvements in

our understanding of how to choose ADI parameters can lead to improvements

for the implementation of projection-based methods such as the RKSM.

In practice, the effectiveness of ADI-based low rank approximation methods

is primarily limited by the lack of known solutions to (1.16) (criterion 4), which

limits our ability to find good ADI shift parameters, as well as the requirement

in Theorem 2 that rank(F ) is small (criterion 2). Criterion 2 is violated, for exam-

ple, in applications where (1.1) arises from spectral discretization of PDEs with

smooth right-hand sides [53, 159, 149, 161, 176]. In Chapters 2 and 3 of this the-

sis, we tackle these problems and develop methods that extend the applicability

of ADI to new regimes. Then in Chapter 4, we develop ADI-based compression

methods for matrices possessing more complicated, rank-structured compres-

sion properties.
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CHAPTER 2

LOW RANK APPROXIMATION FOR MATRICES WITH HIGH

DISPLACEMENT RANK

In this chapter,1 bounds are derived for the singular values of X in (1.1) in

cases where the bound from Theorem 2, σkρ+1(X) ≤ Zk(E,G)∥X∥2, fails to be

informative. Such bounds depend on the brittle assumption that ρ = rank(F )

is small. Here, we tackle the more stable variant of this problem, where F only

needs decay in its singular values, so that rankϵ(F ) is small. Our method is

constructive and leads to an efficient low rank approximation scheme that we

call the factored-independent alternating direction implicit (FI-ADI) method. It

can be used, among other things, to develop fast and spectrally-accurate low

rank solvers for Poisson’s equation in various domains (see Section 2.6).

Our results are rooted in two fundamental observations:

• Splitting property: Equation (1.1) can be split into ρ matrix equations, each

with a rank 1 right-hand side. Specifically, X =
∑ρ

i=1Xi, and each Xi satisfies

AXi −XiB = σi(F )uiv
∗
i , (2.1)

where
∑ρ

i=1 σi(F )uiv
∗
i is the singular value decomposition (SVD) of F .

• Bounding property: Bounds on the singular values of Xi exist that depend

on the size of σi(F ).

Since (2.1) is a Sylvester equation with a rank–1 right hand side, Theorem 2

can be applied to bound the singular values of each Xi. Then, the bounding

1This chapter is based on a paper with Alex Townsend [160]. I developed the algorithms,
theorems, and software described in the paper, and was the lead author in writing it.
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property can be used to exploit the decay of the singular values of F (see The-

orem 5). Our underlying proof technique applies a modification of the ADI

method to (1.1) using the above two observations.

This chapter is organized as follows: In Section 2.1, we briefly review how

Theorem 2 can be applied to bound the singular values of X when rank(F ) is

small, and we then illustrate what goes wrong when F has full rank. In Sec-

tion 2.2 and Section 2.3, we develop a new method for bounding singular val-

ues when F has rapidly decaying singular values. We discuss three examples

in Section 5.4. Section 2.5 describes a practical method for solving (1.1) in low

rank form, and we apply this method to develop fast low rank Poisson solvers

in Section 2.6.

2.1 Bounding the singular values of matrices with displace-

ment structure

In [19], explicit bounds on the Zolotarev numbers are used to bound the sin-

gular values of various matrices with low displacement rank. To illustrate and

briefly review this approach, we consider a Cauchy matrix C ∈ Cm×n, where

we assume without loss of generality that m ≥ n. The entries of C are given by

Cij = 1/(zi − wj), where {zi}mi=1 and {wj}nj=1 are distinct collections of complex

numbers. The matrix C satisfies the Sylvester matrix equation

DzC − CDw = 1, (2.2)

where Dz = diag(z1, . . . , zm), Dw = diag(w1, . . . , wn), and 1 is the rank 1 m ×

n matrix of all ones. Note that Dz and Dw are normal matrices with
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λ(Dz) = {zi}mi=1 and λ(Dw) = {wj}nj=1, respectively. The displacement rank of

C with respect to Dz and Dw is rank(DzC−CDw) = 1. We have from Theorem 2

that

σk+1(C) ≤ Zk(E,G)∥C∥2, 0 ≤ k < n, (2.3)

where {zi}mi=1 ⊂ E and {wj}nj=1 ⊂ G. If we assume, for example, that E = {z ∈

C : |z − z0| ≤ η}, 0 < η < z0, and G = −E, then by Theorem 4, it follows that

σk+1(C) ≤ µ−k
1 ∥C∥2, 0 ≤ k < n, (2.4)

where µ1 is as in (1.24). This shows that the singular values of C decay at least

geometrically, and that for 0 < ϵ < 1, rankϵ(C) ≤ ⌈log(1/ϵ)/ log(µ1)⌉. Similar

arguments can be made for various choices of E and G using the bounds in

Table 1.1.

This approach becomes uninformative if the displacement rank of a matrix

satisfying (1.1) is large. To see this, consider C̃ ∈ Cm×n, m ≥ n, with entries

C̃ij = 1/|zi − wj|2. This matrix satisfies

DzC̃ − C̃Dw = C, (2.5)

where M denotes entrywise complex conjugation on M , and C, Dz and Dw are

as in (2.2). The singular values of C have rapid decay. However, since the dis-

placement rank of C̃ is rank(C) = n, the bound in (1.17) can only be used to

bound σ1(C̃). This reveals nothing about whether C̃ has low numerical rank.

Figure 2.2 (left) shows that the singular values of C̃ decay rapidly. A new ap-

proach is required to bound them explicitly.
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2.2 Bounds via a modification of Smith’s method

Because we have assumed E and G are disjoint disks as in Theorem 4, the opti-

mal ADI shift selection strategy for solving (2.5) uses the same shift parameters,

αj = ϕ and βj = −ϕ, where ϕ is given in (1.23), at every iteration. When this hap-

pens, the fADI method is equivalent to Smith’s method [153]. We first consider

bounding singular values in this setting.

Eq. (2.5) is a special case of (1.1), with A = Dz and B = Dw satisfying the as-

sumptions in Theorem 4, and F = C. Applying k iterations of fADI to (2.5)

constructs an approximant X(k) = W (k)D(k)Y (k)
∗
, where the factors are given

by (1.8), (1.9), and (1.10). The dimensions of W (k) and Y (k) are m × kρ and

n × kρ, respectively. When ρ = n, it is often the case that these matrices have

linearly dependent columns, and this leads to an overestimation of rankϵ(X).

However, in applying k iterations of fADI to (1.1), several potential low rank

approximants to X have been generated in addition to X(k). To see this, write

X(k) as a sum of kρ rank 1 terms,

X(k) =

ρ∑
i=1

k∑
j=1

dijwijy
∗
ij︸ ︷︷ ︸

=Tij

, (2.6)

where wij and yij are the ith columns of the blocks Ŵ (j) and Ŷ (j), respectively,

in (1.8) and (1.9), and dij is the (i, i) entry of D̂(j) in (1.10). The sum in (2.6)

exactly recovers the solution X in the limit as k →∞.

We now represent X by arranging the rank 1 terms in (2.6) in a ρ×∞ rectan-

gle R, so that each Tij is represented by the box in the ith row and jth column

of R (see Figure 2.1). An approximant can be constructed by choosing any fi-

nite collection of boxes and summing together the terms they represent. For

example, the fADI algorithm constructs X(k) by summing together the terms

32



represented in the first k columns of R, as shown in Figure 2.1 (left). A natural

question to ask is whether this is the best choice.

To answer this question, we examine the error associated with these approx-

imants. If X̃t is constructed from a collection Kt of t boxes inR, then ∥X − X̃t∥2

is bounded above by
∑

{(i,j)∈R\Kt} ∥Tij∥2. To approximately minimize the error,

we choose Kt by selecting terms in decreasing order of their norms. Careful ex-

amination of the fADI method reveals that ∥Tij∥2 is influenced by Zj−1(E,−E)

and σi(F ): In (1.8) and (1.9), F is written as MN∗. Assign M = UΣ and N = V ,

where UΣV ∗ is the SVD of F . It follows that

∥Tij∥2 ≤
ϕ

2(z0 − η)2
σi(F )Zj−1(E,−E), (2.7)

where ϕ and r̃j−1(z) are given in (1.23).

Consider C̃ in (2.5). In this case, Zj−1(E,−E) = µ
−(j−1)
1 by Theorem 4. The

right-hand side of (2.5) is the matrix C in (2.2), so it follows from (2.4) that

∥Tij∥2 ≤ ϕµ
−(i+j−2)
1 ∥C∥2/(2(z0 − η)2). This suggests that we construct X̃t by

selecting rank 1 terms along the antidiagonals of R (see Figure 2.1 (right)).

This strategy leads to bounds on the singular values of C̃ with indices that

do not depend on ρ = n, since rank(X̃t) is at most k(k + 1)/2, as opposed

to kρ, and σk(k+1)/2+1(C̃) ≤ ∥C̃ − X̃t∥2. The same reasoning applies for any

matrix X ∈ Cm×n satisfying (1.1), where A and B are as in Theorem 4 and

σi(F ) ≤ µ
−(i−1)
1 ∥F∥2.

Explicit bounds on singular values

We now require explicit bounds on expressions of the form ∥X − X̃t∥2. We find

them using the splitting and bounding properties.
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Figure 2.1: The box in the ith row and jth column represents the rank 1 term
Tij from (2.6). The terms reduce in norm as one applies successive ADI itera-
tions (moving to the right), but they also reduce in norm as the indices of the
singular values of F increase (moving down). In this illustration, we suppose
that ∥Tij∥2 = O(µ

−(i+j−2)
1 ) and rank(F ) = 4. Left: With k = 4, the fADI algo-

rithm constructs X(k), where rank(X(k)) ≤ k2 = 16, by summing terms repre-
sented by the first k columns of the rectangle. The numbering of the boxes
designates the order in which the rank 1 terms are constructed via fADI; decay
in the singular values of F is not exploited. Right: The boxes are numbered
in decreasing order with respect to their norms. Only the first t = k(k + 1)/2
terms (numbered in black) are required to construct an approximant X̃t so that
∥X − X̃t∥2 ≈ ∥X −X(k)∥2.

• Applying the splitting property. The strategy depicted in Figure 2.1 (right)

is equivalent to splitting (1.1) into ρ equations and applying a different num-

ber of fADI iterations to each one. The ith row of R corresponds to the ith

equation in (2.1). Applying si iterations of fADI to (2.1) results in X(si)
i , where

∥
∑∞

j=si+1 Tij∥2 = ∥Xi −X
(si)
i ∥2. The sum of these errors bounds the total er-

ror ∥X − X̃t∥2, where X̃t =
∑ρ

i=1X
(si)
i and t =

∑ρ
i=1 si.

• Applying the bounding property. For each Xi, we have a bound of the form

∥Xi −X
(si)
i ∥2 ≤ Zsi

(E,−E)∥Xi∥2. To find a bound that explicitly involves the

singular value σi(F ), we use the following result:

Lemma 2. Let X ∈ Cm×n satisfy AX − XB = F for normal matrices A and

B. Further, suppose that λ(A) ⊂ E and λ(B) ⊂ −E, where E is the disk
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E := {z ∈ C : |z − z0| ≤ η}, with z0, η ∈ R and 0 < η < z0. Then,

∥X∥2 ≤
∥F∥2

2(z0 − η)
.

Proof. The lemma follows as a special case of [92, Thm. 2.1].

Applying Lemma 2 to (2.1), we find that ∥Xi∥2 ≤ σi(F )/(2(z0 − η)). Using

this result, we can now derive explicit bounds on the singular values of X . We

begin with the case where σk(F ) decays at the same rate as Zk(E,−E).

Theorem 5. Let X ∈ Cm×n, m ≥ n, satisfy AX − XB = F , with λ(A) ⊂ E and

λ(B) ⊂ −E , where E = {z ∈ C : |z − z0| ≤ η}, with z0, η ∈ R and 0 < η < z0. Sup-

pose that for 0 ≤ j < n, σj+1(F ) ≤ Kµ−j
1 ∥F∥2, where µ1 is given in (1.24) and K ≥ 1

is a constant. For the triangular numbers 1 ≤ t = k(k + 1)/2 < n, the singular values

of X are bounded in the following way:

σt+1(X) ≤ K
z0 + η

z0 − η
(3
2

√
t+ 1)µ

−(
√
8t+1−1)/2

1 ∥X∥2. (2.8)

Proof. Let rank(F ) = ρ. Consider the approximant X̃t =
∑k

i=1

∑k+1−i
j=1 Tij, where

Tij are given in (2.6). We allow the choice k > ρ with the convention that

for s > ρ, ∥Tsj∥2 = 0.2 This corresponds to selecting terms along the an-

tidiagonals of R in Figure 2.1. Since rank(X̃t) ≤ t = k(k + 1)/2, we have that

σt+1(X) ≤ ∥X − X̃t∥2. The proof proceeds by bounding the approximation er-

ror ∥X − X̃t∥2. The error equation is given by

X − X̃t =

ρ∑
i=k+1

∞∑
j=1

Tij︸ ︷︷ ︸
=S1

+
k∑

i=1

∞∑
j=k+1−i

Tij︸ ︷︷ ︸
=S2

.

2For expository reasons, when k > ρ, we do not account for the non-contribution of the terms
∥Tsj∥2 = 0 in our bounds. This simple but notationally tedious task would improve the bounds
associated with k > ρ.
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Using the fact that
∑∞

j=1 Tij = Xi, where Xi is given in (2.1), we find that S1

satisfies AS1 − S1B =
∑ρ

i=k+1 σi(F )uiv
∗
i . It follows from Lemma 2 that

∥S1∥2 ≤
σk+1(F )

2(z0 − η)
≤ K∥F∥2µ−k

1

2(z0 − η)
. (2.9)

To bound ∥S2∥2, observe that S2 =
∑k

i=1(Xi −X
(si)
i ), where X

(si)
i is con-

structed by applying si = k+1−i steps of fADI to (2.1). For each i, we have

∥Xi −X
(si)
i ∥2 ≤ Zsi

(E,−E) ∥Xi∥2 ≤
σi(F )

2(z0 − η)
µ−si
1 ,

where Lemma 2 has been used to bound ∥Xi∥2. This implies that

∥S2∥2 ≤
K∥F∥2
2(z0 − η)

k∑
i=1

µ
−(i−1)−si
1 ≤ K∥F∥2

2(z0 − η)
kµ−k

1 , (2.10)

and (2.9) and (2.10) together give the bound

σt+1(X) ≤ ∥X − X̃t∥2 ≤
K∥F∥2
2(z0 − η)

(k + 1)µ−k
1 . (2.11)

To get a relative bound, we must divide the expressions in (2.11) by ∥X∥2. Triv-

ially, the relation AX − XB = F implies that 1/∥X∥2 ≤ (∥A∥2 + ∥B∥2) /∥F∥2.

Due to the assumptions on E we have ∥A∥2 + ∥B∥2 ≤ 2(z0 + η). The theorem

follows from the fact that k = (
√
8t+ 1− 1)/2, and for t ≥ 1, k ≤ 3

√
t/2.

In Theorem 5, it is assumed for convenience that t is a triangular number.

However, for any 1 ≤ t < n, a bound on σt+1(X) is found by bounding the sum

of the first t terms selected along the antidiagonals of R (see Figure 2.1 (right)).

The constants in (2.8) are due to estimates on ∥X∥2, and are therefore not nec-

essarily tight. The polynomial term in the bound is also suboptimal. However,

as shown in the appendix of our related paper [160], there are A, B and F sat-

isfying Theorem 5 so that for 1 ≤ t ≤ ρ(ρ + 1)/2, ∥X − X̃t∥2 ≈ σt+1(X). This

implies that X̃t is a near-best low rank approximation to X , and that the decay
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Figure 2.2: Left: The normalized singular values for matrices of the form
C̃ij = 1/|zi − wj|2 are plotted for three different selections of sets {zi}100i=1 ⊂ Eγ

and {wj}100j=1 ⊂ −Eγ for γ = 15 (blue), 30 (red), and 60 (purple), where Eγ is a
disk of radius 10 with center (γ, 0). Rapid decay of the singular values is ob-
served. Right: The error from constructing a rank t approximant as described in
Section 2.2 (red) bounds the normalized singular values for C̃ of size 1000× 1000
(blue), and is bounded above by the decay rate (excluding the polynomial fac-
tor) from the bound in Theorem 5 (black).

rate µ−(
√
8t+1−1)/2

1 in (2.8) cannot be improved without additional assumptions

on A, B, and F .

Applying Theorem 5 to C̃ shows that for triangular numbers t, 1 ≤ t < n,

σt+1(C̃) ≤
z0 + η

z0 − η
(3
2

√
t+ 1)µ

−(
√
8t+1−1)/2

1 ∥C̃∥2. (2.12)

Figure 2.2 displays the decay rate from (2.12), as well as the error

∥C̃ − X̃t∥2/∥C̃∥2, where X̃t is constructed as in Theorem 5. These results also

give a bound on rankϵ(C̃). For 0 < ϵ < 1, we have that

rankϵ(C̃) ≤
k∗(k∗ + 1)

2
, k∗ =

⌈
log

(
(z0 + η)(3

2

√
n+ 1)

(z0 − η)ϵ

)/
log µ1

⌉
, (2.13)

where we have used the fact that
√
t ≤
√
n. For fixed 0 < ϵ < 1, the bound

in (2.13) only grows polylogarithmically with n, so that for very large n, stan-

dard operations, such as matrix-vector multiplication, can be performed to an

ϵ-accuracy in quasi-optimal computational complexity by using X̃t.

37



We need not require that the decay rate of σi(F ) matches the decay rate

of Zk(E,−E). As an example, suppose that σi(F ) decays with i at a geomet-

ric rate twice that of Zk(E,−E), i.e., σi+1(F ) ≤ Kµ−2i
1 ∥F∥2. It is no longer opti-

mal to construct an approximant X̃t by selecting terms along antidiagonals of

R (see Figure 2.1 (right)). Instead, the number of fADI iterations applied to

each Xi in (2.1) (each row of R) must be modified. Specifically, for each Xi,

construct X(si)
i with si = 2k − 2(i− 1) to form X̃t =

∑k
i=1X

(si). If, on the other

hand, σi+1(F ) ≤ Kµ
−i/2
1 ∥F∥2, then X̃t is constructed by performing si = k+1−i

iterations of fADI on Xi and Xi+1 simultaneously. Generalizing from these ex-

amples, we have the following corollary:

Corollary 3. Suppose that the assumptions of Theorem 5 hold, except that

σi+1(F ) ≤ Kµ−i
F ∥F∥2, with µF > 1. Let µ = min(µF , µ1), and define the integer ℓ

as ℓ = ⌊log (max(µF , µ1)) / log µ⌋. Then, for the numbers 1 ≤ t = ℓk(k + 1)/2 < n,

the singular values of X are bounded as

σt+1(X) ≤ K
z0 + η

z0 − η
(3
2

√
t+ 1)µ−ℓ(

√
8t+1−1)/2 ∥X∥2.

Further generalizations of Theorem 5 hold whenever explicit bounds are

known for the singular values of F , even if the rate of decay is not geometric.

For example, with the same assumptions as Theorem 5 except that the singular

values of F decay algebraically, the singular values of X can be shown to decay

at the same algebraic rate.

A generalization of Theorem 5 and Corollary 3 can be stated when E and

G are any two closed disks in the complex plane that are disjoint from each

other. This follows from Theorem 3.1 in [154], where Zk(E,G) and rk are given

for disks E and G that are each symmetric about the real axis, as well as the

observation that Zk(E,G) is invariant under rotation.
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2.3 Bounds via a modification of fADI

We now consider AX −XB = F , with λ(A) ⊂ [−b,−a], λ(B) ⊂ [a, b] for a, b ∈ R

and 0 < a < b. This scenario arises, for example, in the discretization of Pois-

son’s equation (see Section 2.6). The Zolotarev rational function rk that attains

the infimum Zk([−b,−a], [a, b]) in (1.16) is described in Corollary 2. Moreover,

we have from Theorem 3 that

Zk([−b,−a], [a, b]) ≤ 4µ−k
2 , µ2 = exp

(
π2

log(4b/a)

)
. (2.14)

The zeros and poles of rk(z) can be computed using elliptic integrals [109, 182],

and they form a set of k ADI shift parameters {(αℓ, βℓ)}kℓ=1. In contrast to Sec-

tion 2.2, one cannot expect that the extremal function rj(z) that attains the in-

fimum Zj([−b,−a], [a, b]) has any zeros or poles in common with rk(z) when

j ̸= k. To use explicit bounds associated with Zj([−b,−a], [a, b]) for 1 ≤ j ≤ k,

we must allow for the use of several sets of shift parameters when constructing

our ADI-based approximant X̃t. This is a natural generalization of the approach

used in Theorem 5, and it leads to the following theorem:

Theorem 6. Let X ∈ Cm×n, m ≥ n, satisfy AX − XB = F , and suppose that the

assumptions in Theorem 5 hold, except that λ(A) ⊂ [−b,−a] and λ(B) ⊂ [a, b], with

a, b ∈ R and 0 < a < b. Then, for the triangular numbers 1 ≤ t = k(k + 1)/2 < n, we

have

σt+1(X) ≤ Kb

a
(6
√
t+ 1)µ

−(
√
8t+1−1)/2

2 ∥X∥2.

Proof. Let X =
∑ρ

i=1Xi, where rank(F ) = ρ and each Xi satisfies (2.1). For each

i ≤ k, construct the approximant X̃t =
∑k

i=1X
(si)
i , si = k+1−i, where X(si)

i is

constructed by applying si = k+1−i iterations of fADI to (2.1) using optimal

ADI shift parameters (these parameters are different for each i). It follows that
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σt+1(X) ≤ ∥X − X̃t∥2, and the proof consists of bounding the error ∥X − X̃t∥2.

This can be done just as in Theorem 5 if one uses the fact that [a, b] can be con-

tained in a disk with radius η = (b − a)/2 and center z0 = (b + a)/2, so that

Lemma 2 is applicable.

As before, we have the following corollary when the singular values of F

and Zk([−b,−a], [a, b]) decay at potentially different geometric rates:

Corollary 4. Suppose that the assumptions of Theorem 6 hold, except that

σi+1(F ) ≤ Kµ−i
F ∥F∥2, with µF > 1. Let µ = min(µF , µ2), and define ℓ as

ℓ = ⌊log (max(µF , µ2)) / log µ⌋. Then, for 1 ≤ t = ℓk(k + 1)/2 < n, we have

σt+1(X) ≤ Kb

a
(6
√
t+ 1)µ−ℓ(

√
8t+1−1)/2∥X∥2. (2.15)

Proof. For a sketch of the proof, see the discussion preceding Corollary 3.

Related bounds can be stated when λ(A) ⊂ [a, b] and λ(B) ⊂ [c, d], with

a < b < c < d. In this case, with F as in Corollary 4, we find that

σt+1(X) ≤ K
max(|a|, |b|) + max(|c|, |d|)

|c− b|
(6
√
t+ 1)µ−ℓ(

√
8t+1−1)/2∥X∥2,

where t is as in Corollary 4, µ = min(µF , exp(π
2/ log 16γ)), and γ is the cross-

ratio |c − a| |d − b|/(|c − b| |d − a|). This result is found by using a Möbius

transformation that preserves Zk([a, b], [c, d]) to map [a, b] ∪ [c, d] to symmetric

intervals [−α,−1] ∪ [1, α] (see [19]), and then applying Corollary 4.

2.4 Examples

The ideas and results in Section 2.1 are connected to and inform a variety of

other results. We give two examples that show how the splitting and bounding
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properties can be used. Then in Section 2.6 we apply these ideas to describe a

low rank spectral method for solving Poisson’s equation when the right-hand

side is a smooth function.

2.4.1 The Hadamard product with a Cauchy matrix

Let A, B and F satisfy the assumptions of Theorem 5.3 Since A and B are nor-

mal matrices, they have eigendecompositions A = Y ΛAY
∗ and B = WΛBW

∗.

Therefore, X in (1.1) can be written in closed form as

X = Y (C ◦ (Y ∗FW ))W ∗, (2.16)

where C is a Cauchy matrix with entries Cjk = 1/((ΛA)jj − (ΛB)kk), and ‘◦’ is

the Hadamard matrix product. Bounds on the singular values of X can be de-

termined using (2.16), rather than the method in Section 2.1. First, we split

AX −XB = F into the ρ = rank(F ) equations in (2.1). By (2.16), each Xi in (2.1)

can be expressed as

Xi = σi(F )Y (C ◦ (Y ∗uiv
∗
iW ))W ∗. (2.17)

For each i ≤ k, we use fADI on (2.2) to construct a rank ≤ si = k+1−i approxi-

mant C(si) to C. Substituting C(si) for C in (2.17) results in an approximantX(si)
i ,

and the sum of the matrices X(si)
i is an approximant to X . This approach results

in bounds of the form

σt+1(X) ≤ 2K∥C∥2(z0 + η)(3
2

√
t+ 1)µ

−(
√
8t+1−1)/2

1 ∥X∥2,

where 1 ≤ t = k(k + 1)/2 < n. This relates the singular values of X to proper-

ties of the Cauchy matrix C. Generically, we have ∥C∥2 ≤
√
mn/(2(z0 − η)) due

3Analogous results hold under the assumptions of Theorem 6, as well as the various gener-
alizations of these theorems.
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to (2.2) and Lemma 2, but unfortunately, this does not result in bounds with an

improved polynomial term when compared to (2.8). However, a more useful

bound on ∥C∥2 may be available in specific cases.

This approach leads to an efficient algorithm for approximating X in low

rank form when fast matrix-vector products for Y and W are available (see Sec-

tion 2.6 and also [65, Ch. 4.8]).4

2.4.2 Families of structured matrices

Let C be a Cauchy matrix as in (2.2) and define the family Fm,n = {C◦p}∞p=1,

where (C◦p)ij = 1/(zi − wj)
p and m ≥ n. For p ≥ 2, C◦p satisfies the Sylvester

equation DzC
◦p − C◦pDw = C◦(p−1), and a recursive argument can be used to

bound the singular values of each matrix in Fm,n. As an example, consider

the matrix C◦3. For C◦2, Theorem 5 can be applied directly, revealing that the

singular values are bounded exactly as in (2.12). To bound the singular values

of C◦3, define each Xi so that it satisfies

DzXi −XiDw =

(i+1)(i+2)/2−1∑
j=i(i+1)/2

σj(C
◦2)ujv

∗
j , (2.18)

where uj and v∗j are the jth singular vectors of C◦2. The approximant X̃t to C◦3 is

constructed by applying k+1−i fADI iterations to (2.18) for each i ≤ k, and then

summing the resulting matrices. This is a variation on Theorem 5 and results in

a bound of the form

σt+1(C
◦3) ≤ K1µ

−k
1 ∥C◦3∥2, 1 ≤ t =

1

24
k(k + 1)(k + 2)(k + 3) < n, (2.19)

4To compute this approximant in low rank form, one uses the fact that for vectors ui =
(u1i, . . . , umi) and vi, C ◦ uiv

∗
i = diag(u1i, . . . , umi)Cdiag(v1i, . . . , vni).
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where K1 = O(
√
n). It follows that as n→∞, rankϵ(C

◦3) = O((log(
√
n/ϵ))4). As

p is increased, the bounds on the singular values of C◦p become increasingly

weak, but the bound on rankϵ(C
◦p) always grows polylogarithmically with n.

This implies that for large enough n, the matrices inFm,n are well-approximated

by low rank matrices. The set of d-dimensional, real-valued Vandermonde

matrices satisfies a more complicated recursive relation that leads to similar

bounds, and related results hold for various matrix families defined using the

structured matrices in [19].

2.5 The FI-ADI method

The low rank approximations employed to bound singular values in Section 2.1

can be automatically computed, resulting in an efficient method for approxi-

mately solving AX − XB = F in low rank form whenever A and B satisfy

the assumptions in Theorem 5 or Theorem 6 (or their corollaries and general-

izations), and linear solves involving A and B can be performed cheaply (see

Section 2.6 for an application). We refer to this method as factored-independent

ADI (FI-ADI). An outline of the FI-ADI method is given in the pseudocode be-

low,5 where we assume the above conditions on A and B are met (see Sec Sec-

tion 2.5.1 for a generalization). Key details for efficient implementation are de-

scribed below.

5An implementation of FI-ADI in MATLAB is available at https://github.com/
ajt60gaibb/freeLYAP.
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The FI-ADI method

Input: ◦ A ∈ Cm×m, B ∈ Cn×n , F =
∑ρ

i=1 σi(F )uiv
∗
i

◦ A tolerance 0 < ϵ < 1

◦ Disjoint sets E,G ⊂ C such that λ(A) ⊂ E and λ(B) ⊂ G

◦ A batch number d and batching parameters {ℓi}
d+1
i=1 , ℓd+1 = ρ+ 1.

Output: Factors W , D and Y , where ∥X −WDY ∗∥2 ≈ ϵ∥X∥2 , AX −XB = F .

1. Split S := AX −XB =
∑ρ

i=1 σi(F )uiv
∗
i into d equations:

Si := AXi −XiB =

ℓi+1−1∑
j=ℓi

σj(F )ujv
∗
j , 1 ≤ i ≤ d. (2.20)

2. Find τ ≈ ∥X∥2

3. Set W = [ ], D = [ ], Y = [ ]

for i = 1, . . . , d

(i) Determine si so that for Zsi
(E,G),

Zsi
(E,G) ≤ (ϵ τ dist(E,G)) /

(
d σℓi(F )

)
, dist(E,G) = min

z∈E,w∈G
|z − w| (2.21)

(ii) Compute the set {αi,j , βi,j}
si
j=1 of optimal ADI shift parameters associated with

Zsi
(E,G).

(iii) Apply si steps of fADI to Si to find Zi, Di and Yi

(iv) W =

[
W Wi

]
, Y =

[
Y Yi

]
, D = diag(D,Di)

(v) Compress W , D and Y

Error estimates. As described in the pseudocode, the FI-ADI method con-

structs X̃ = WDY ∗. If τ ≤ ∥X∥2, then ∥X − X̃∥2 ≤ ϵ∥X∥2: by Theorem 2,

Lemma 2, and the bound on Zsi
(E,G) in (2.21), ∥Xi −X

(si)
i ∥2 ≤ (ϵ/d)∥X∥2.

A simple but often overly pessimistic choice for τ is found using

∥F∥2 ≤ (∥A∥2 + ∥B∥2)∥X∥2,. Settling for ∥X − X̃∥2 ≈ ϵ∥X∥2, it is often more

efficient to perform a few steps of FI-ADI and then estimate τ using this ap-
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proximant. We also find it effective in practice to choose the number of fADI

steps for each i as s∗i = max(Kmax, si), where si is computed as in Step (i) in the

pseudocode and Kmax satisfies ZKmax
(E,G) ≤ ϵ.

Factorizations of F . In Section 2.1, we used the SVD factorization F = USV ∗

to derive bounds. This is also depicted in the pseudocode. However, the FI-ADI

method works with any “approximate SVD” of the form F = ŨΣ̃Ṽ ∗, where Σ̃ is

diagonal with Σ̃1,1 ≥ · · · ≥ Σ̃n,n, and ∥Ũ(:,i)Ṽ
∗
(:,i)∥2 = 1.

Computation of ADI shift parameters. If E and G are disks in the com-

plex plane, the required single shift parameter (α, β) is given by Theorem 5, a

rotation mapping, and the formula in [154]. When E andG are closed real inter-

vals, we refer the reader to the formulas in [109], as well as the MATLAB code

in [53, Appendix A]. For most other choices of E and G, heuristic shift selection

strategies must be employed (see Section 2.5.1).

Compression. The approximant X̃ is potentally a near-best low rank ap-

proximant to X , but in practice, X̃ can often be further compressed. For large

problems where memory is restrictive, an interim compression strategy (Step

(v) in the pseudocode) is essential, and various schemes can be used (e.g., [73]).

We apply the method from [16, Ch. 1.1.4], where the skinny QR factorizations

ZD = QzRz and Y = QyRy are used to find the truncated SVD of the small ma-

trix RzR
∗
y. The computational cost (in flops) of the compression step grows with

the number of columns of W as O((m+ n)t2 + t3), where W has t columns. It is

beneficial to apply compression after each iteration i to keep the solution factors

small.
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Batching linear solves. Computational savings can be gained by grouping

right-hand sides together when performing linear solves. For example, when

the same ADI shift parameter is used in every fADI iteration for all Si in (2.20),

the uncompressed factorsWDY ∗ are efficiently constructed by applying si fADI

iterations to the equation
∑i

j=1 Sj at each iteration i, with si−1 ≥ si. Even when

the shift parameters differ, efficiency is potentially improved by grouping right-

hand sides together in Step 1. However, the cost of the compression step is also

influenced by the batch sizes, and there is no simple choice of d and {ℓi}d+1
i=1 that

generically optimizes performance.

FI-ADI versus fADI. The FI-ADI method can be seen as a generalization

of fADI, where more freedom has been permitted in the order that the rank 1

terms used to approximate X are constructed. Using an FI-ADI-based method

over fADI in theoretical settings results in improved bounds on singular values

of X (see Section 2.1). However, the practical performance of either method de-

pends greatly on implementation details, as well as the properties of A, B and

F . Vectorization and batched solves are efficient, and fADI takes full advantage

of this, whereas FI-ADI may not. The main practical benefit of FI-ADI is that

re-ordering how rank 1 terms are constructed leads to an effective interim com-

pression strategy. A related idea is discussed in [73] in connection to the low

rank cyclic Smith method. There, the reordering of the terms is not designed to

exploit the singular value decay of F , but rather to improve memory costs.
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2.5.1 Generalized FI-ADI

We briefly review how an FI-ADI-based method can be used when the theorems

and corollaries in Section 2.1 are not applicable.

Nonnormality. Let A and B be diagonalizable but non-normal matri-

ces, with eigendecompositions A = VAΛAV
−1
A and B = VBΛBV

−1
B . The ADI er-

ror is bounded as ∥X −X(k)∥2 ≤ κ2(VA)κ2(VB)∥rk(ΛA)∥2 ∥rk(ΛB)∥2∥X∥2, where

κ2(M) = ∥M∥2∥M−1∥2. If bounds on κ2(VA) and κ2(VB) are known or can be

numerically estimated, then the influence of these terms on the number of ADI

steps can be estimated [161, Sec. 5]. Alternatively, any spectral set [10] can be

used to bound ∥rk(A)∥2 ∥rk(B)−1∥2 [19, Cor. 2.2].

Non-optimal shift selection. If the sets E and G do not allow for optimal

shift parameter selection, then one of many heuristic shift strategies may be ap-

plied [143, Ch. 4.4]. The use of suboptimal shifts affects convergence [151], and

additional computational costs are incurred since either the ADI error equation

or the residual equation must be monitored to determine convergence. We re-

mark that only a few alternative schemes for solving AX − XB = F when

rank(F ) is large have been proposed in the literature [104, 148]. When using

FI-ADI, the residual error is given by ∆k(S) := ∥rk(A)Frk(B)−1∥F [17], where

∥ · ∥F is the Frobenius norm. Using the submultiplicative property for ∆k(Si),

the influence of the singular values of F can be exploited.
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2.6 A collection of low rank Poisson solvers

In [53], spectral discretizations are developed so that the ADI method can be

used to solve Poisson’s equation on a variety of domains in optimal computa-

tional complexity (up to polylogarithmic factors). Combining these ideas with

FI-ADI leads to highly efficient Poisson solvers that construct low rank approx-

imations to solutions.

An FI-ADI–based Poisson solver on a square

Let u be the solution to Poisson’s equation on the square, i.e.,

∂2u

∂x2
+
∂2u

∂y2
= f, x, y ∈ [−1, 1]2, u(±1, ·) = u(·,±1) = 0, (2.22)

where f is a smooth function on [−1, 1]2. A standard numerical approach for

finding u is to discretize (2.22) using second-order finite differences. This leads

to a Lyapunov equation D2X +XDT
2 = F that can be solved in only O(n2 log n)

operations using the closed form solution in (2.16) and the FFT [65, Ch. 4.8].

Applying the FI-ADI method or using (2.16) results in a fast low rank solver,

but the accuracy of such an approach is limited.

To achieve spectral accuracy, we instead apply the method in [53],

where (2.22) is discretized in a way that leads to the matrix equation

AX̂ − X̂B = D̃F̂ D̃T . Here, X̂ and F̂ contain scaled expansion coefficients for

expressing u and f , respectively, in a particular ultraspherical polynomial basis,

and D̃ is diagonal. We refer the reader to [53, Sec. 3] for further details. This dis-

cretization is specifically designed for ADI-based approaches: A and B satisfy

the assumptions in Theorem 6 and they are banded, so that linear solves involv-
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ing them are cheap. For these reasons, FI-ADI is a highly efficient method for

approximating X̂ in low rank form. Recurrence relations among ultraspherical

polynomials ensure that a rank k approximation to X̂ can be transformed to

a convenient Chebyshev basis in O(kn log n) operations [53, 122]. The inverse

transform is also fast, so that if f is a smooth function, a low rank factorization

of the matrix F̂ can be found efficiently using methods in [158].

The left panel of Figure 2.3 illustrates the computational savings gained from

using the FI-ADI method to exploit the numerical rank of X̂ .6 In this example,

a matrix of bivariate Chebyshev coefficients for f is given in low rank form

for several choices of f . We use this to find F̂ in low rank form. A low rank

approximation to X̂ is then computed and transformed to the Chebyshev basis.

We compare this approach to the optimal complexity solver in [53] that forms F̂

explicitly, and then finds X̂ in explicit form.

The right panel displays a solution ũ to (2.22) computed in Chebfun [45]

using this approach, where f is smooth and its 512× 512 Chebyshev coefficient

matrix is approximated by a rank 206 matrix. The exact solution is given by

u = (1− x2)(1− y2) sin(3π(1 + cos(πx2 − πy2))(x− 2y)(2x+ y) cos(πx2 + πy2)).

With the tolerance parameter set at ϵ = 10−10, our approach results in an error

of ∥u− ũ∥2/∥u∥2 ≈ 7.01× 10−11.

6A faster implementation of both the FI-ADI and ADI-based solvers is achieved by perform-
ing the required linear solves with a subroutine written in C (see https://github.com/
danfortunato/fast-poisson-solvers), which is not used here. The degrees of freedom
in this experiment are increased artificially to demonstrate asymptotic complexity.
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Figure 2.3: Left: The wall clock time in seconds is plotted against the prob-
lem size n for computing the Chebyshev coefficients of an approximate solution
to (2.22), with a relative tolerance of 1× 10−10. A low rank, FI-ADI–based solver
with right-hand sides of varying rank (colored lines), all with rapidly decay-
ing singular values, is compared against a spectrally accurate, quasi-optimal
complexity solver [53] that is unaffected by the rank of F and returns X in ex-
plicit form (black). The FI-ADI–based solver returns a low rank approxima-
tion WDY ≈ X . Timings include compression of the factors W , D, and Y . In
both cases, F is provided in low rank form (with approximate singular values).
Right: The solution to (2.22), where f is a smooth function with a 512× 512
Chebyshev coefficient matrix F of rank 206, computed with Chebfun using the
spectral method in [53] and FI-ADI.

FI-ADI–based Poisson solvers for other domains

This approach is not limited to a square domain: Combining FI-ADI with the

discretizations described in [53] and [176] leads to efficient low rank Poisson

solvers for 2D functions on rectangles, disks, and on the surface of a sphere,

and for 3D functions on solid spheres, cylinders, and cubes.
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CHAPTER 3

FABER RATIONAL FUNCTIONS

Chapter 2 expands the applicability of ADI to settings where rank(F ) may be

large. However, a major limitation to the usefulness of ADI remains because

we lack explicit solutions to the Zolotarev problem in (1.16) for general sets E

and G in C. In this chapter1, we use a special class of functions called Faber

rationals to make strides toward solving this problem. The Faber rational func-

tions behave similarly to the Zolotarev rationals and approximately solve (1.16).

They are analogous to the Faber polynomials [103, 147] introduced by Faber in

his thesis [50]. The Faber rationals are described by Ganelius in [59, 58, 60],

with a formal definition and a list of relevant properties supplied in [59, Sec. 3].

Our results in [141] use Faber rationals to bound Zk(E,G) under rather general

assumptions on E and G.

After a brief description of the Faber rationals and the bounds they supply

on Zk(E,G) (Sections 3.1 and 3.1.1), we discuss how Faber rationals and related

quantities can be computed numerically (Section 3.3). Then, we show how they

can be applied in various contexts: they lead to new bounds on the singular

values of certain matrix families (Section 3.5.1) , and their zeros and poles (and

proxies to these values) are effective as ADI shift parameters (Section 3.5.2). The

derivation of the Faber rationals and their use in understanding Zk(E,G) is re-

lated to the development and analysis of rational approximation methods via

logarithmic potential theory [60, 145] (see Section 1.5.3). We discuss the perfor-

mance of the Faber rationals in comparison with other asymptotically optimal

1This chapter is based on sections 6 and 7 of a paper [141] by Daniel Rubin, Alex Townsend,
and me. The derivation of the bounds on Zk(E,G) (sections 1-5) in terms of cap(E,G) is pri-
marily the work of Daniel Rubin. This chapter focuses on my contributions, which include the
development of numerical methods and applications.
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rational functions in Section 3.5.2.

We remark that while the Faber rationals have valuable and interesting ap-

proximation properties, they are not computationally efficient to construct. The

substantial challenge of making practical algorithms for solving Zolotarev’s ra-

tional approximation problems remains, but we hope that the ability to explore

such challenges with the Faber rationals will lead to new discoveries.

3.1 Faber rational functions

LetE andG be such that C\G is open and simply connected andE is a compact,

simply-connected subset of C \G. Throughout this chapter, we assume that the

boundaries of E and G are rectifiable Jordan curves. To be concrete, the main

situation we focus on is when

(A1) E and G are disjoint, simply-connected, compact sets (see Figure 3.1).

The Faber rationals offer a general approach for obtaining explicit bounds on

Zk(E,G). Our construction and the resulting bounds onZk(E,G) can be applied

more generally. In Section 3.4, we discuss two other types of sets E and G:

(A2) C \G is a bounded domain containing E (see Figure 3.5),

(A3) G is an unbounded domain and E is a compact domain contained in C\G

(see Figure 3.6).

The construction of Faber rationals requires conformal maps of doubly con-

nected sets. A domain Ω ⊂ C is said to be doubly connected if between any
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E G

Ω = C \ (E ∪G)
ω0

Ψ

Φ

A

Figure 3.1: We mainly focus on the situation when E and G are disjoint and
compact sets in the complex plane. Here, Φ : Ω → A is the conformal map
that transplants Ω onto an annulus A = {z ∈ C : 1 < |z| < h} with h =
exp(1/cap(E,G)). The location ω0 ∈ C is the pole of the inverse map Ψ = Φ−1.

two points in Ω there are two distinct paths, i.e., two paths that cannot be

smoothly deformed into each other. Any doubly connected domain, except for

those conformally equivalent to a punctured disk, are conformally equivalent

to A = {z ∈ C : 1 < |z| < h} for some h > 1 [38, Ch.1, sec.7]. When E,G ⊂ C are

as in Theorem 7, Ω = C \ (E ∪ G) is doubly connected and can be conformally

mapped to an annulus, i.e.,

Φ : Ω→ A, A = {z ∈ C : 1 < |z| < h}. (3.1)

Since conformal maps preserve the condenser capacity of a pair of plate con-

densers and the condenser capacity ofA is 1/ log(h) [85], the outer radius in (3.1)

is h = exp(1/cap(E,G)). If E and G are disjoint polygons, then Φ can be con-

structed via a doubly-connected Schwarz–Christoffel mapping [93], though sev-

eral numerical issues arise from the practical application of this strategy. The

inverse conformal map is denoted by Ψ = Φ−1 : A → Ω. We discuss effective

numerical methods for constructing Φ and Ψ in Section 3.3.2.

A simple observation about the map Φ is that for z ∈ E, |Φ(z)| ≤ 1, and for

z ∈ G, |Φ(z)| ≥ h. This suggests that Φk(z) may serve as a good proxy to the
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z0−z0

−2 2
−1.2

1.2

Figure 3.2: A phase plot of the type (5, 5) Faber rational function on two disjoint
disks, E = {z ∈ C : |z − 1| ≤ .7} and G = −E. Since there is a Möbius transfor-
mation from C \ (E ∪G) to an annulus, Zk(E,G) is known explicitly.

Zolotarev rational rk(z) associated with E and G. In fact, if Φ(z) is a Möbius

transformation, and therefore a rational function, we observe that due to the

lower bound from Gončar in (1.19), the rational function Φk(z) satisfies

h−k ≤
supz∈E

∣∣∣Φk(z)
∣∣∣

infz∈G

∣∣∣Φk(z)
∣∣∣ ≤ h−k,

From this, we conclude that Zk(E,G) = h−k and moreover, Φk(z) is a rational

function that attains Zk(E,G) in (1.16). In other words, Φk(z) is a Zolotarev

rational function associated with E and G.

As an example, consider the case where E and G are disjoint disks. An alter-

native way to find Zk(E,−E) in Theorem 4, where E = {z ∈ C : |z − z0| ≤ η}, is

with the Möbius transformation

Φ(z) =
z0 + η + ϕ

z0 + η − ϕ
z − ϕ
z + ϕ

, ϕ =

√
z20 − η2,

which maps Ω to the annulus Awith the outer radius h = (z0+ϕ)/(z0−ϕ). Note

that h agrees with µ1 in (1.24). A phase plot of Φ is shown in Figure 3.2.

In the case where Φk is a type (k, k) rational function, we say it is the Faber

rational function associated with E and G. When Φ in (3.1) is not a Möbius trans-

formation, we find that Φk ̸∈ Rk,k. Therefore, Φk is not immediately useful for
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bounding Zk(E,G). However, we still expect Φk to be O(hk) near the boundary

of G and O(1) near the boundary of E. Thus, the idea is to construct a rational

function from Φk by “filtering” Φk using the so-called Faber operator associated

with Ψ = Φ−1 [4], which was first introduced as an operator for constructing

polynomial approximations known as Faber polynomials [50, 103] The ratio-

nal function obtained from Φk after the “filtering” process is called the Faber

rational associated with E and G. We describe this process in more detail in

Section 3.2, but first describe the bounds attained in [141] on Zk(E,G) that come

from this construction.

3.1.1 Bounding Zolotarev numbers with Faber rationals

The Faber rationals approximately solve Zolotarev’s third problem. Their ex-

plicit construction leads to bounds on Zk(E,G) that involve a geometric quan-

tity called the total rotation of the domains E and G [57, 137], abbreviated as

Rot(E), and Rot(G), respectively. For any simply-connected domain, we note

that Rot(E) ≥ 1. When E is a polygon, 2πRot(E) equals the sum of the ab-

solute values of E’s exterior angles. Moreover, when E is a convex domain,

Rot(E) = 1 [4, p. 6]. A full derivation of the bounds is found in [141], but we

restate the main result here.

Theorem 7. Let E,G ⊂ C be disjoint, simply-connected, compact sets with rectifiable

Jordan boundaries. Then, for h = exp(1/cap(E,G)), we have

Zk(E,G) ≤ (2Rot(E) + 2)(2Rot(G) + 2)h−k +O(h−2k), as k →∞,

where Rot(E) and Rot(G) are the total rotation of the boundaries of the domains E

and G, respectively. If, in addition, E and G are convex sets, then we simply have
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Zk(E,G) ≤ 16h−k +O(h−2k) as n→∞.

Theorem 7 shows that Gončar’s lower bound on Zk(E,G) in (1.19) is sharp

up to a constant. In particular, for disjoint, simply-connected, compact sets

E,G ⊂ C with rectifiable Jordan boundaries, we have that

1 ≤ lim sup
k→∞

Zk(E,G)

h−k
≤ (2Rot(E) + 2)(2Rot(G) + 2).

An explicit expression of the upper bound in Theorem 7 is inelegant [141,

eq. 1.4], but simple to compute. Figure 3.3 illustrates how the bounds behave for

convex sets with varying values of h. The best previous explicit upper bound

for sets satisfying (A1)-(A3) is Zk(E,G) ≤ 4000k2h−k [60]. Our work is closely

related to an argument in [58], where a bound of the form Zk(E,G) ≤ Ch−k is

described with C independent from k, though the value of the constant is never

worked out.

3.2 Constructing Faber rationals analytically

We now give an analytic description for the Faber rationals, which is based on

the procedure in [60]. A detailed derivation is found in [141]. There are two

main steps: (1) Constructing a function, Rk(z), defined on C \ G with precisely

k zeros, and (2) using Rk to construct the Faber rational function, r̃k(z), of type

(k, k). Both steps are accomplished by taking Cauchy integrals along the bound-

aries of E and G.
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Figure 3.3: Bounds on Zk(Eα,−Eα), where E is the set
Eα = {z ∈ C : Re(z) ∈ [−.4− α, .4− α], Im(z) ∈ [−.6, .6]}, with α = .45 (blue),
.6 (orange), 1 (purple), 3 (green). As α grows, h = exp(1/cap(Eα,−Eα)) grows,
and Zk(Eα,−Eα) decays more rapidly. The solid lines are the bounds from The-
orem 7, combined with the trivial bound Zk(E,F ) ≤ 1. The dotted lines are the
lower bounds of Zk(Eα,−Eα) ≥ h−k in (1.19). The dots are computed by first
constructing the Faber rational function r̃k(z) associated with (Eα,−Eα), and
then computing the maxz∈Eα

|r̃k(z)|/minz∈−Eα
|r̃k(z)|.

3.2.1 Step 1: Constructing a function Rk(z) with k zeros near E

Let γ : [0, 1] → Ω be a positively oriented parameterization of the boundary E.

We can define the following “filtered” function inside E:

Rk(z) :=
1

2πi

∫
γ

Φk(ζ)dζ

ζ − z
, z ∈ E. (3.2)

The holomorphic function Rk(z) is initially defined inside E. If it is possible

to extend Φ homomorphically to the whole interior of E, then Rk(z) = Φk(z)

there, but this occurs only in exceptional cases. Intuitively one might expect

Rk(z) to behave like a degree k polynomial whose zeros are all in E, since it has

boundary values on ∂E close to those of Φk, which are the same as the function

zk on the boundary of the unit circle. In particular, since |Φk(z)| ≤ 1 for z ∈ E,
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the function |Rk(z)| should be relatively small on E. This is shown to be true

in [141, Lemma 3.1]. For example, in the useful case where E is assumed to be

convex, it is shown that

sup
z∈E
|Rk(z)| ≤

4(1 + h−k)

1− h−2k
, k ≥ 0. (3.3)

By analytic continuation, the definition of Rk can now be extended to Ω =

C \ (E ∪G). Fix z ∈ Ω. First, we continuously deform the contour γ to a contour

γ′ that is contained in Ω and encloses z. By continuously deforming the contour

γ′ back to γ plus a path traversed in both directions extending to an arbitrarily

small circle around z, we find that

Rk(z) =
1

2πi

∫
γ
′

Φk(ζ)dζ

ζ − z
= Φk(z) +

1

2πi

∫
γ

Φk(ζ)dζ

ζ − z
, z ∈ Ω.

Here, the term Φk(z) appears because it is the average value of the Cauchy inte-

gral over an arbitrarily small circle around z. Since |Φk(z)| < hk for z ∈ Ω, we

find that Rk is a bounded function in Ω.

Since the Cauchy transform of a continuous function on a closed contour can

be used to define two distinct holomorphic functions — one in the interior of the

region bounded by the contour and the other on the exterior — we can write

C+∂E(Φ
k)(z) =

1

2πi

∫
γ

Φk(ζ)dζ

ζ − z
, z inside of γ,

C−∂E(Φ
k)(z) =

1

2πi

∫
γ

Φk(ζ)dζ

ζ − z
, z outside of γ,

where the subscript indicates that the integral is taken over the boundary of E.

Therefore, the function Rk(z) can be expressed as

Rn(z) =


C+∂E(Φ

k)(z), z ∈ E,

Φk(z) + C−∂E(Φ
k)(z), z ∈ C \ (E ∪G).

(3.4)
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To further emphasize the interpretation that Rk(z) is a filtered version of

Φk(z), we highlight that Rk(z) is relatively close to Φk(z) for z ∈ Ω.

Lemma 3. Let E,G ∈ C be sets satisfying the assumptions in Theorem 7. Then, Rk(z)

in (3.4) satisfies

sup
z∈Ω

∣∣∣Rk(z)− Φk(z)
∣∣∣ ≤ 1 + sup

z∈E
|Rk(z)| .

Proof. See [141, Lemma 3.2]

Lemma 3 allows us to show that all the zeros of Rk lie in E or within a small

neighborhood ofE. Rouché’s Theorem says that the winding numbers of Φk and

Rk around a closed curve Γ will be equal provided that |Φk(z)−Rk(z)| < |Φk(z)|

for z on Γ [2]. By Lemma 3, the theorem applies on any closed curve Γ in Ω

winding once around E such that 1 + supz∈E |Rk(z)| < |Φk(z)| for z on Γ. Such

a curve Γ can always be found when the bound 1 + supz∈E |Rk(z)| < hk, say,

by taking the image of Γ to be an appropriate level set of |Φk|. The map Φk has

winding number of precisely k around Γ by definition (though it is not defined

inE) and hence so doesRk. SinceRk is analytic inside Γ, it has k zeros (counting

multiplicities) inside Γ. Moreover, the same reasoning shows that Rk has no

additional zeros outside of Γ in Ω.

We denote the distinct zeros of Rk as z1, . . . , zK with corresponding multi-

plicities m1, . . . ,mK such that m1 + · · · +mK = k. In [60], a more precise state-

ment is proved about the location of the zeros ofRk(z). For example, it is shown

that for sufficiently large k, the zeros of Rk(z) lie inside E or in a neighborhood

of E.
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Figure 3.4: Left: A plot of the conformal map Ψ = Φ−1, where Φ maps C \
E ∪ G to the annulus A = {z ∈ C : 1 < |z| < h}. Right: The magnitude
of the type (9, 9) Faber rational function is plotted on a logarithmic scale. As k
increases, the Faber rational function grows increasingly larger onG and smaller
onE, making it useful as an approximation to the Zolotarev rational that attains
Zk(E,G) in (1.16).

3.2.2 Step 2: Constructing a Faber rational function

While Rk has precisely k zeros, it is typically not a rational function. We must

“filter” Rk again to obtain a rational function. Let η : [0, 1] → Ω be a curve that

winds around G once in the counterclockwise direction. We choose η close to

the boundary of G: Letting 0 < δ < 1, η satisfies |Φ(η(t))| ≥ h − δ for t ∈ [0, 1].2

By Lemma 3, Rk is close to Φk on η, and |Φk| is close to hk on η. Making sure

that δ is sufficiently small enough to avoid encircling any zeros of Rk, we can

assume that 1/Rk is analytic on the curve η (see (3.4)). We can construct analytic

functions inside and outside of η (the inside of η contains G) as

C+η (1/Rk)(z) =
1

2πi

∫
η

dζ

Rk(ζ)(ζ − z)
, z inside of η,

C−η (1/Rk)(z) =
1

2πi

∫
η

dζ

Rk(ζ)(ζ − z)
, z outside of η.

(3.5)

2The requirement that δ > 0 is a technical necessity as Rk(z) is defined for z ∈ C\G. Later, we
take δ → 0 so conceptually one may prefer to think of η as a parameterization of the boundary
of G.
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It is possible to give an exact expression for C−η (1/Rk)(z) in terms of Rk(z) for z

outside of η.

Lemma 4. Let E,G ∈ C be sets satisfying the assumptions in Theorem 7 and Rk(z)

be defined as in (3.4). If z1, . . . , zK are the distinct zeros of Rk(z) with multiplicities

m1 + · · ·+mK = k, then for z outside of η we have

C−η (1/Rk)(z) = −
1

Rk(z)
+

K∑
k=1

mk∑
j=1

ak−j

(z − zk)j
+

1

Rk(∞)
, (3.6)

where ak−j is the z−j coefficient of the principal part of the Laurent series forRk(z) about

zk.

Proof. See [Lem. 3.4][141]

Lemma 4 can be combined with the Sokhotski–Plemelj Theorem [84] to find

an expression for C+η (1/Rk)(z) in terms of Rk(z). We have

C+η (1/Rk)(z)− C−η (1/Rk)(z) =
1

Rk(z)
, for z on η.

and, by analytic continuation, we have

C+η (1/Rk)(z) =
K∑
k=1

mk∑
j=1

ak−j

(z − zk)j
+

1

Rk(∞)
, z inside of η. (3.7)

We conclude that C+η (1/Rk) is a rational function of type (k, k). Finally, we define

the Faber rational r̃k associated with E and G as

1

r̃k(z)
=

K∑
j=1

mj∑
ℓ=1

aj−ℓ

(z − zj)ℓ
+

1

Rk(∞)
. (3.8)

The expression for r̃k(z) in (3.8) is ideal for identifying r̃k(z) as a rational func-

tion of type (k, k). The relationship 1/r̃k(z) = C+η (1/Rk)(z) in (3.5) is more

convenient for practical computations as it does not involve computing zk for

1 ≤ k ≤ K or the Laurent coefficients {aj−ℓ}.
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3.3 Constructing Faber rationals numerically

In this section, we describe algorithms evaluating Faber rational functions, as

well computing h = exp(1/cap(E,G)). We also discuss a method for finding the

poles and zeros of r̃k.

3.3.1 Evaluating r̃k

To evaluate r̃k(z), we use the integral formulations for 1/r̃k(z) developed in Sec-

tion 3.2.2. It is acceptable for numerical purposes to choose the contour η

in Lemma 4 as ∂F . Taking this liberty, we have from the lemma that

1/r̃k(z) =


1

2πi

∫
∂G

dζ

Rk(ζ)(ζ − z)
, z ∈ G,

− 1

Rk(z)
+

1

2πi

∫
∂G

dζ

Rk(ζ)(ζ − z)
, z ∈ C \G,

(3.9)

where the first integral is understood in the principal value sense for z ∈ ∂G,3

and Rk is defined in (3.4).

The integrals in (3.4) and (3.9) can be computed using a quadrature rule,

but these computations can become numerically unstable when z is close to

the contour of the integral being evaluated. To alleviate this issue, we apply a

variant of the barycentric interpolation formula [25]. For z ∈ G, this takes the

following form:

1

r̃K(z)
=

∫
∂G

dζ

Rk(ζ)(ζ − z)∫
∂G

dζ

ζ − z

≈

NQ∑
j=1

wj

Rk(xj)(xj − z)
NQ∑
j=1

wj

xj − z

,

3We avoid sampling directly on ∂G in our applications, and so omit discussion on the nu-
merical computation of principle value integrals.
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where {(wj, xj)}
NQ

j=1 are an appropriate set of quadrature weights and nodes.

A similar procedure is used when evaluating Rk(z) for z ∈ E near ∂E. Once

fz = 1/r̃k(z) is computed, we set r̃k(z) = 1/fz. After one can evaluate r̃k on

E ∪G, it can be represented as a rational function via the AAA algorithm [119],

which makes further evaluations more efficient.

3.3.2 Computing the conformal map

Evaluating Rk(z) requires the conformal map Φ : Ω→ A. We construct Φ using

the method in [165]. In this approach, Φ is computed via the Green’s function

associated with the Laplacian operator on Ω. The problem reduces to solving

∆u = 0 with boundary conditions as in [146, p. 253], [165, Sec. 4]. To solve for

u, boundary data is used to find the least squares fit to the coefficients of an

approximate rational expansion of u. This is especially effective for resolving

singularities in corners of the domain because the poles of the expansion are

chosen to be exponentially clustered near the singular points [67]. The value of

h is treated as an additional unknown in the least squares system of equations,

and it is recovered along with u.

This method is versatile and can be used whenE andG are polygons, as well

as when their boundaries are either analytic curves or piecewise continuous

analytic curves. It can be adapted for use in the (A2) case from Section 3.4 where

G is unbounded. An example displaying both the conformal map and the Faber

rational is shown in Figure 3.4.
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3.3.3 The poles and zeros of r̃k

To compute the poles and zeros of r̃k, we first construct a representation of r̃k

in barycentric form via the AAA algorithm [119]. This construction is compu-

tationally expensive because r̃k must be sufficiently sampled on the sets E and

G. The poles and zeros are then computed by solving an (n + 2) × (n + 2) gen-

eralized eigenvalue problem. To improve the accuracy of the computation, we

apply AAA twice: first to r̃k on E to compute the zeros, and then again to r̃k on

G to compute the poles. For an application involving poles and zeros, see Sec-

tion 3.5.2.

3.4 Faber rationals on other sets in C

In addition to the (A1) case where E and G are both compact sets (see Fig-

ure 3.1), there are two other types of sets E and G where our results in [141]

using Faber rationals leads to explicit bounds on Zk(E,G):

(A2) C \G is a bounded domain containing E (see Figure 3.5), and

(A3) G is an unbounded domain and E is a bounded subset of C \G.

For the (A3) case, the bound on Zk(E,G) is the same as in the (A1) case (see The-

orem 7 and [141, eq. 1.4] ). In the (A2) case, Ψ no longer has a pole in the annulus

A, and this leads to a slightly different bounds on Zk(E,G), which are given ex-

plicitly in [141, Thm. 5.1].
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Figure 3.5: Illustration of the typical setup when C \ G is a bounded domain
containing a compact set E.
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Figure 3.6: Illustration of the typical setup when G is an unbounded domain
and E is a compact domain contained in C \ G. The location ω0 ∈ C is the pole
of the inverse map Ψ = Φ−1.

3.5 Applications in computational mathematics

We give two examples from numerical linear algebra where the Faber rationals

can be applied. In the first, we bound the singular values of complex-valued

Cauchy and Vandermonde matrices. In the second example, we treat r̃k as a

proxy to the true Zolotarev rational function association Zk(E,G). We show

that the poles and zeros of r̃k are near-optimal parameters in the alternating

direction implicit (ADI) method, and we discuss related methods based on ideas

from logarithmic potential theory.
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3.5.1 Bounding the singular values of matrices.

We suppose that X ∈ Cm×n satisfies the Sylvester matrix equation

AX −XB = F , with ρ = rank(F ). When A and B are normal matrices with

spectra λ(A) ⊂ E, λ(B) ⊂ G, then we recall from Theorem 2 that the normal-

ized singular values of X are bounded above in terms of Zolotarev numbers.

Specifically,

σkρ+1(X) ≤ Zk(E,G)∥X∥2, 0 ≤ kρ+ 1 ≤ min(m,n). (3.10)

Pairing this observation with the bounds on Zk(E,G) from Theorem 7 gives

bounds on σkρ+1(X) whenever E and G are as in the theorem (or as in cases

(A2-A3) from Section 3.4). One can of course also extend Theorem 5 and its gen-

eralizations from Chapter 2 to bound σkρ+1(X) in terms of the singular values

of F when ρ is large. We illustrate the point with two examples.

Complex-valued Cauchy matrices

Let C be a Cauchy matrix in Cm×n, with entries given by

Cjℓ = 1/(xj − yℓ), x = {xj}mj=1 ⊂ E, y = {yℓ}nℓ=1 ⊂ G,

where E and G are as in Theorem 7 and the sets x, y are each collections of

distinct points. Since rank(DxC − CDy) ≤ 1, where Dx = diag(x1, . . . , xm), it

immediately follows from (3.10) and Theorem 7 that for 0 ≤ k ≤ min(m,n)− 1,

σk+1(C) ≤ KE,Gh
−k∥C∥2, h = exp(1/cap(E,G)).

with KE,G = (2Rot(E) + 2)(2Rot(G) + 2) + O(h−k). An explicit expression of

KE,G is found in [141, eq. 1.4], and if we take E and G to be convex (say, two
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Figure 3.7: The first 18 normalized singular values of a Cauchy
matrix (blue dots) and Vandermonde matrix (red dots) are plot-
ted against the singular value index k on a logarithmic scale. The
Cauchy matrix is given by Cjℓ = 1/(xj − yℓ), 1 ≤ j, ℓ ≤ 100, where
for all (j, ℓ), xj ∈ EC := {z ∈ C : .3 ≤ Re(z) ≤ 1.3, |Im(z)| ≤ .5} and
yℓ ∈ −EC . The nodes of the Vandermonde matrix V ∈ C100×80 all
lie in EV = {z ∈ C : |z − (2 + i)/10| < .4}. The solid lines show bounds
on σk(C)/σ1(C) (blue) and σk(V )/σ1(V ) (red) obtained via Theorem 7
and Lemma 5, respectively.

convex polygons), then KE,G = 16 + O(h−k). To implement the bound, we

compute h using the method in Section 3.3.2. A comparison of the bounds with

computed singular values is shown in Figure 3.7. Prior to this, explicit bounds

on the singular values of C were only known in settings where E and G were

disjoint disks, intervals of the real line, or arcs on a circle (see Table 1.1 ).

Vandermonde matrices with nodes inside the unit circle

Let Vx be an m × n Vandermonde matrix with entries (Vx)jℓ = x
(ℓ−1)
j , where the

nodes x = {xj}mj=1 are distinct points in C. The singular values of Vx are known

to decay rapidly when each xj is real [19], and there are multiple results on the
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(extremal) singular values of Vx when all |xj| = 1 [14, 117]. Less is known about

singular value decay when |xj| < 1, despite the fact that this assumption is

encountered in several applications [15, 27, 133]. We give the following lemma:

Lemma 5. Let Vx ∈ Cm×n have a set of distinct nodes contained in the disk E :=

{|z − z0| < η0}, z0 ̸= 0, where E is in the open unit disk. Then, the following bound

holds for 0 ≤ k − 1 ≤ min(m,n):

σk+1(Vx) ≤ h−k∥Vx∥2,

where

h =

∣∣∣∣z0 − |z0|β(z0 + η0)

|z0|(z0 + η0)− βz0

∣∣∣∣ , β =
1

2|z0|

(
1 + c−

√
(1 + c)2 − 4|z0|2

)
, c = |z0|2−η20.

Proof. We observe that rank(DαV −V Q) = 1, where Q =
[ 0 1
In−1 0

]
is the circulant

shift matrix. The eigenvalues λ(Q) are the nth roots of unity. We choose G as

the set exterior to the open unit disk and note that λ(Q) ⊂ G. We map Ω :=

C \ E ∪G to the annulus A := {z ∈ C : 1 < |z| < h} with the following Möbius

transformation:

T(z) :=
h(|z0|z − z0β)
z0 − |z0|βz

,

where h, β, and c are as in the theorem. Since T maps Ω → A conformally

and T is rational, rk = Tk is the rational function that attains Zk(E,G), and

Zk(E,G) = h−k. Applying (3.10) completes the proof.

The bounds from Lemma 5 are shown in Figure 3.7 along with computed

singular values. We remark that if E is centered on the origin, then h = 1/η0.

For more general choices of E, an argument similar to the proof of Lemma 5 can

be applied using the bounds on Zk(E,G) from Theorem 7 and its variations.
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Figure 3.8: Left: The computed ADI error ∥X − X(k)∥2/∥X∥2 is plotted against
the indices k on a logarithmic scale, where ADI is applied using Faber shifts
(blue), generalized Fejér points (red), and generalized Leja points (yellow).
The bound on the error for ADI with Faber shifts is shown as a dotted line.
Here, X satisfies (1.1), with m = n = 100, λ(A) ∈ E, λ(B) ∈ −E, where
E = {z ∈ C : .3 ≤ Re(z) ≤ 1.3, −1.3 ≤ Im(z) ≤ 1.3}. Right: The magnitude of
the Faber rational r8 is plotted on a logarithmic scale over E. Generalized Fejér
points (red squares) and generalized Leja points (yellow squares) associated
with (E,−E) are plotted. These are selected as the αj parameters for ADI, and
due to the symmetry of the domain, one sets βj = −αj . The Faber shifts are
formed by using the zeros of r8 as αj parameters, and the poles of r8 (not de-
picted) as βj parameters.

3.5.2 ADI shift parameters from Faber rationals

We recall from Section 1.4 that the ADI error equation depends on the choice of

2k shift parameters, {(αj, βj)}2kj=1. As shown in (1.13), the bound on the error is

controlled as follows:

∥X −X(k)∥2 ≤
supz∈E |sk(z)|
infz∈G |sk(z)|

, sk(z) =
k∏

j=1

z − αj

z − βj
. (3.11)

The minimal value of the bound, Zk(E,G), is attained when sk is selected as

the Zolotarev rational function associated with E and G. When E and G are as

in Theorem 7, we choose instead to use the zeros and poles of Faber rational

function r̃k. We refer to these poles and zeros as Faber shifts. For this choice,

the bounds on Zk(E,G) in Theorem 7 also bound the expression involving sk
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in (3.11). Since the bounds decay with k at essentially the same rate as Zk(E,G),

the Faber shifts are nearly optimal shift parameters.

We do not claim to have an efficient method for computing Faber shifts; the

approach in Section 3.3.3 is impractical for applications. For convexE,G, we ob-

serve that ADI with shifts derived from other so-called asymptotically optimal

rational functions [154], i.e., rationals sk such that the limit in (1.28) holds, often

perform comparably to ADI with Faber shifts (see Figure 3.8). This includes the

generalized Fejér points [172], which can be computed with the inverse confor-

mal map Ψ from Section 3.2, and the generalized Leja points, which are com-

puted recursively by a greedy process [11, 154]. We describe these points in

more detail in Section 1.5.3. The great advantage of the Faber shifts is that ex-

plicit upper bounds on Zk(E,G) are available when k is finite. These bounds

capture the capabilities of the ADI method, and they are also useful for error

analysis in other contexts. For example, the convergence behavior of the RKSM

algorithm [46] and the skeleton decomposition method for low rank matrix ap-

proximations [46, 124, 168] can be understood via bounds on Zk(E,G). The

Faber rationals may also be illuminating in the study of rational approxima-

tions to the function f(z) = sign(z) on on E ∪ G, where E is confined to the

left half-plane and G is confined to the right half-plane. This is because there

is a mathematical equivalence between the Zolotarev rational functions and the

best type (k, k) rational approximations to f in the infinity norm taken over

E ∪G [94].
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CHAPTER 4

ADI-BASED HIERARCHICAL LINEAR SOLVERS

In some instances where X satisfies (1.1), the ADI method can be used as an an-

cillary compression routine for computing with X in other tasks (e.g., matrix–

vector products, solving linear systems). The bounds on singular values in [19]

for real-valued Vandermonde, Cauchy and Pick matrices (among others), re-

veal that these matrices are well-approximated by low rank matrices. Since the

bounds are derived using solutions to Zolotarev’s problem, fADI can be applied

using optimal ADI shift parameters to cheaply construct low rank approxima-

tions (see Sections 1.4.2 and 1.5). For example, a rank k approximation V (k) to

the real-valued n × n Vandermonde matrix V , where ∥V − V (k)∥ ≤ Ch−k∥V ∥2,

can be constructed in low rank form in only O(nk) operations.

In this chapter1, we consider matrices that require more complicated com-

pression schemes. Our methods can be used to explain compression schemes

that are exploited in existing superfast solvers for linear systems Ty = b, where

T is a Toeplitz matrix (Section 4.1). This leads to more general ADI-based rank-

structured compression strategies, and lays the groundwork for developing su-

perfast solvers for linear systems involving other matrices, including general

Cauchy matrices, non-uniform discrete Fourier transform (NUDFT) matrices,

Toeplitz+Hankel matrices, and various evaluation matrices for orthogonal poly-

nomial expansions [100].

The key structure we exploit is that these matrices satisfy Sylvester equations

1This chapter is largely based on a manuscript [18] by Bernhard Beckermann, Daniel Kress-
ner, and myself. I am the lead author, and I developed the algorithms, theorems, and accompa-
nying software discussed in the chapter. A variation on the main theorems was independently
derived by Beckermann; these can be found in [18].
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of the form AX −XB = LH∗ where

(1) rank(LH∗) is small,

(2) A and B are normal and can be diagonalized using fast transforms,

(3) subsets of λ(A) and λ(B) are well-separated.

Unlike our assumptions in the last two chapters, here we consider the case

where λ(A) ⊂ E and λ(B) ⊂ G, with E and G intersecting or even coinciding.

In these cases, we expect that X is not compressible. However, the fast diag-

onalization property means that we can efficiently solve Xy = b by working

instead with a transformed linear system X̃y = b̃, where X̃ has the Cauchy-like

displacement structure,

DAX̃ − X̃DB = L̃H̃∗, (4.1)

with DA and DB diagonal. The matrix X̃ may not be of low numerical rank,

but because of assumption (3), it has submatrices that are, and these sub-

matrices inherit Cauchy-like displacement structures from X̃ . This observa-

tion motivates our development of ADI-based analogues to compression meth-

ods from the multipole expansion and randomized linear algebra communi-

ties [35, 77, 111, 112, 116, 180]. We develop our ideas within the context of

explaining compression properties used in superfast Toeplitz linear systems,

though we keep in mind the larger goal of developing a broader collection of

ADI-based solvers.
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4.1 Rank–structured superfast Toeplitz solvers

A matrix that is constant along each diagonal is called a Toeplitz matrix:

T =



t0 t−1 · · · t−n+1

t1 t0
. . .

...

...
. . .

. . . t−1

tn−1 · · · t1 t0


∈ Cn×n.

Toeplitz matrices appear frequently in computational mathematics, arising in

applications such as time series analysis and dynamical systems [5, 96], im-

age and signal processing [70, 96], and in numerical methods for solving

PDEs [71, 83]. Although the development of fast (and superfast) solvers for lin-

ear systems with Toeplitz matrices is a classical topic that is more than 60 years

old [83, 96], there have been significant advances in recent years. In particu-

lar, an efficient class of solvers is based on the observation that any Toeplitz

matrix can be transformed into a matrix C with compressible off-diagonal

blocks [33, 112, 180]. This allows one to leverage existing algorithms for ma-

trices with hierarchical low rank structures. Here, we perform an analysis of the

compressibility of C. This completes and improves upon existing analyses, and

allows us to design a new, ADI-based algorithm for compressing C that can be

extended to other matrices with displacement structures similar to that of T .

Most fast solvers for Tx = b are based on the observation that the displace-

ment rank of T is small. In this work, we use the fact that T satisfies

ST − TS = LH∗, S =

 0 1

In−1 0

 , rank(LH∗) = ρ≪ n. (4.2)

For a Toeplitz matrix T , one has that ρ ≤ 2.
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Algorithm 1 Superfast solvers for a Toeplitz-like linear system (4.3).

1: Compute b̃ = Fb, L̃ = FL, H̃ = FH .
2: Determine C̃, a hierarchical low rank approximation of C = FTF∗ from its

generators L̃, H̃ .
3: Solve C̃x̃ = b̃.
4: Compute x = F∗x̃.

This choice of the displacement equation for T is by no means unique. Our

choice (4.2) is simple but not suitable for all purposes because the linear operator

T 7→ ST − TS is singular. For this reason, T cannot be fully reconstructed from

the so-called generator matrices L and H . Other choices have been made in the

literature. Classical fast solvers of complexity O(n2), such as the generalized

Schur algorithm, exploit the observation that Schur complements and inverses

preserve the displacement rank, which in turn allows one to perform certain

operations on T , such as the LU factorization, entirely in terms of the generator

matrices; see [96] for a survey.

The matrix S in (4.2) is circulant and thus diagonalized by a discrete Fourier

transform F , where F∗F = I . The transformed matrix C = FTF∗ satisfies a

Sylvester equation with diagonal coefficients. This observation has been used

in [63] to derive fast solvers with enhanced numerical stability. More recently,

several works [33, 112, 180] have derived new superfast solvers by observing

that submatrices of C not containing entries on the main diagonal are well-

approximated by low rank matrices. Algorithm 1 describes the general frame-

work of these solvers applied to a linear system

Tx = b, T ∈ Cn×n, (4.3)

with T satisfying (4.2).

Steps 1 and 4 of Algorithm 1 can be easily accomplished in O(n log n) op-
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erations using fast Fourier transforms (FFTs).2 For Step 2, several hierarchical

approximations of C are possible. This includes the relatively simple HODLR

format, as well as the more involved SSS (sequentially semi-separable) and HSS

(hierarchical semi-separable) formats used in [33] and [111, 180], respectively.3

In all these formats, C̃ is constructed by recursively partitioning C into suc-

cessively smaller submatrices and replacing each submatrix by a low rank ap-

proximation. The SSS and HSS formats have additional structure; the low rank

factors at finer partition levels are nested within the low rank factors used at

coarser levels of the recursion tree; see Section 4.4. Their use leads to particu-

larly efficient O(nr2) direct solvers for Step 3 [34, 180], where the rank of each

low rank approximant in C̃ is bounded by r . The efficiency of Steps 2 and 3

depends on (i) the hierarchical low rank format used, (ii) the compressibility of

C, (iii) the method of approximation used to find C̃, and (iv) the type of solver

used in Step 3. In this work, we focus on analysis and improvements related to

(ii) and (iii).

Main results. We introduce new, explicit bounds on the singular values of

submatrices of C that thoroughly explain its low rank properties. While some

theoretical descriptions of the rank structure of C are given in [33, 111], these ar-

guments are qualitative. Upon careful inspection (see Section 4.2), they do not

fully justify the use of HODLR, HSS, or other weakly-admissible [77] hierarchi-

cal formats. We note, however, that the larger focus of these papers is the de-

velopment of efficient numerical techniques for constructing and inverting HSS

approximations to C, and that the implemented methods work well in practice,

2For the singular Sylvester equation ST − TS, the main diagonal of C cannot be computed
from the generator matrices. A simple formula for recovering the diagonal of C from T in only
O(n log n) flops follows from projecting T onto the subspace of circulant matrices.

3Note that the more general H and H2-type formats [16, 76] are also applicable but such a
higher level of generality is not needed given the relatively simple structure of C.
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even if they have incomplete justifications. Our arguments fully explain why

these methods work well in practice, and they also supply a priori estimates on

the numerical ranks of off–diagonal submatrices of C, including those that arise

from HODLR and HSS partitioning. This leads to fully adaptive hierarchical

factorization schemes that automatically select appropriate approximation pa-

rameters based on a relative tolerance parameter 0 < ϵ < 1. Our bounds show

that generally, an off-diagonal HSS or HODLR submatrix of C has ϵ-rank of size

O(log n log(1/ϵ)) (see Theorems 9 and 10).

To complement our bounds, we apply the alternating implicit direction

(ADI) method to construct low rank approximations with controllable errors,

and we introduce an ADI-based interpolative decomposition for constructing

HSS factors with special, nested structures. The current state of the art for solv-

ing (4.3) given an arbitrary Toeplitz matrix is an implementation of Algorithm 1

that uses extremely efficient compression routines based on randomized linear

algebra [180]. Our HSS-based solver in Section 4.4 is a competitive analogue

that does not rely on randomized linear algebra or any particular properties ofC

(e.g., fast matrix-vector products inherited from T ) other than its displacement

structure. Our approach can therefore be used with linear systems involving

other types of matrices. Complexity analyses and numerical tests reveal that

the ADI-based method is competitive with the randomized method, and is in

fact cheaper by a modest factor.

The rest of this discussion is organized as follows: In Section 4.2, we derive

new bounds that characterize the compressibility of C. In Sections 4.3 and 4.4,

we show how our bounds can be used, in combination with ADI, to construct

HODLR and HSS approximations to C. We describe a practical implementation
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of an HSS-based solver, with numerical results, in Section 4.4.5. Then in Sec-

tion 4.5, we briefly discuss the extension of these ideas to other linear systems.

4.1.1 The displacement structure of Toeplitz matrices

Starting with the Sylvester equation satisfied by T in (4.2), we first diagonalize

S with a discrete Fourier transform F , where F∗F = I . Throughout, we assume

n is a power of 2.4 Letting ω = exp(iπ/n), we have that

FSF∗ = D, F =

(
ωj(2k−1)

√
n

)
j,k=1,...,n

, (4.4)

where D = diag(ω2, ω4, . . . , ω2n). The transformed matrix C = FTF∗ satisfies

the equation

DC − CD = L̃H̃∗, L̃ = FL, H̃ = FH, (4.5)

with the same displacement rank ρ ≤ 2.

Each off-diagonal entry Cjk, j ̸= k, can be recovered by multiplying the cor-

responding off-diagonal entry of L̃H̃∗ by 1/(ω2j−ω2k). The latter can be viewed

as the discretization of the function f(x, y) = 1/(x − y) with x, y both on the

unit circle. When |x− y| is large enough, a truncated Taylor expansion of f can

be used to construct good low rank approximations to those submatrices of C

only containing indices (j, k) for which |ω2j − ω2k| is not small. Intuitively, this

suggests that submatrices of C far from the main diagonal as well as the top-

right and bottom-left corners (due to periodicity) should be compressible. Such

submatrices are depicted in Figure 4.1 (right). To get sharper bounds, especially

4This assumption simplifies the notation and discussion related to HODLR and HSS formats,
since it relates these partitioning schemes to perfectly balanced binary trees. HODLR and HSS
matrices can be constructed when n is not a power of 2 with balanced binary trees instead [113].
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for regions close to the singularity of f so that we can describe the compressibil-

ity of all of the off-diagonal submatrices, we appeal to arguments based on C’s

displacement structure.

4.2 The submatrices of the transformed Toeplitz matrix

Bounds derived from the properties of the Zolotarev numbers and Theorem 2

cannot be applied directly to the Sylvester equation (4.5) because its coefficients

are identical and thus have spectra that are anything but disjoint. On the other

hand, any submatrix of C also satisfies a Sylvester equation. For subsets J and

K of I0 = {1, . . . , n}, we let CJK denote the |J | × |K| submatrix of C containing

all entries Cjk with j ∈ J , k ∈ K. By (4.5), we have that

DJCJK − CJKDK = L̃JH̃
∗
K , (4.6)

where the diagonal matrix DJ contains the diagonal elements ω2j for j ∈ J ,

DK is defined analogously, and L̃J , H̃K contain the corresponding rows of L̃,

H̃ . As long as J ∩ K = ∅, (4.6) is nonsingular and the spectral sets λ(DJ) and

λ(DK) are contained in disjoint arcs on the unit circle, which we callAJ andAK ,

respectively (see Figure 4.2). From Theorem 2, we have that for 0 ≤ 2k ≤ n− 1,

σ2k+1(CJK) ≤ Zk(AJ ,AK)∥CJK∥2. (4.7)

An explicit bound on Zk(AJ ,AK) will depend on the distance between the end-

points of the arcs AJ and AK . We have the following result:

Theorem 8. Let Aτ = {eit : t ∈ [τ1, τ2]}, and let Aκ = {eit : t ∈ [κ1, κ2]}, where

0 < τ1 < τ2 < κ1 < κ2 ≤ 2π. Then,

Zk(Aτ ,Aκ) ≤ 4µ−2k
0 , µ0 = exp

(
π2

2 log(16γ)

)
, (4.8)
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where

γ =
| sin ((κ1 − τ1)/2) sin ((κ2 − τ2)/2) |
| sin ((κ2 − τ1)/2) sin ((κ1 − τ2)/2) |

.

Proof. Let T be a Möbius transformation that maps Aτ ∪ Aκ to two disjoint in-

tervals [a, b] ∪ [c, d] of R, where

[a, b] := [T(eiτ1),T(eiτ2)], [c, d] := [T(eiκ1),T(eiκ2)].

By Property (6) in Lemma 1, we have that Zk(Aτ ,Aκ) = Zk([a, b], [c, d]), so from

Theorem 3, we have that

Zk(Aτ ,Aκ) ≤ 4µ−2k
0 ,

where γ = (|c − a| |d − b|)/(|c − b| |d − a|) is the modulus of the cross ratio of

(a, b, c, d). The cross-ratio is invariant under T, i.e.,

γ =
|eiκ1 − eiτ1| |eiκ2 − eiτ2|
|eiκ1 − eiτ2| |eiκ2 − eiτ1 |

.

The theorem then follows from the chord identity.

We can now use Theorem 8 to explicitly bound the ϵ-ranks of submatrices

of C. We are particularly interested in the types of submatrices that appear in

factorization schemes for constructing HODLR and HSS approximations to C.

We review the partitioning schemes with more formality in Sections 4.3 and 4.4,

but state the main results here. We begin with HODLR blocks, which are defined

as square super-diagonal and sub-diagonal blocks of C (see Figure 4.3).

Theorem 9 (HODLR submatrix bounds). Let CJK be an m × m off–diagonal

HODLR block of the n × n matrix C, where 1≤ m ≤n/2 and C is as in (4.5). Then,

for 0 < ϵ < 1,

rankϵ(CJK) ≤ 2

⌈
2

π2 log

(
2n√

min(2m− 1, n−2m+1)

)
log

(
4

ϵ

)⌉
. (4.9)
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Proof. We make the assumption that CJK is a superdiagonal block, since for

subdiagonal blocks, one can apply the same argument using CT . By definition

(see Section 4.3), the index sets J and K are of the form

J = {p, p+1, . . . p+m− 1} ⊂ I0, K = {p+m, p+m+1, . . . , p+2m− 1} ⊂ I0,

where I0 = {1, . . . , n}. Since CJK satisfies (4.6), the singular values of CJK are

bounded as in (4.7), where

AJ = {eit : t ∈ [2πp/n, 2π(p+m− 1)/n]} (4.10)

AK = {eit : t ∈ [2π(p+m)/n, 2π(p+ 2m− 1)/n]}. (4.11)

To complete the proof, we need to bound Zk(AJ ,AK) in terms of m and n. We

note from Theorem 8 that

Zk(AJ ,AK) ≤ 4 exp

(
π2

2 log(16γ)

)−2k

.

Using basic estimates of sin(πx), we find that

γ =
| sin θ1|2

| sin θ2|, | sin θ3|
≤ 1(

2min(2m− 1, n−2m+1)

n

)
2

n

=
n2

4min(2m− 1, n−2m+1)
,

where θ1 = πm/n, θ2 = π ((2m−1)/n mod (1/2)), θ3 = π/n. It follows that

Zk(AJ ,AK) ≤ 4 exp

(
π2/ log

(
2n√

min(2m− 1, n−2m+1)

)
/4

)−2k

, (4.12)

and the theorem then follows from the definition of ϵ-rank.

Many HSS factorization schemes require a special type of submatrix, which

we call a maximal submatrix. They are also referred to as HSS block columns in

the literature [111].

Definition 2. The submatrix CJK , where J = {p, p + 1, . . . ,m + p − 1} ⊂ I0 and

K = I0 \ J , is called a maximal submatrix of size m.
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Figure 4.1: (Left) Definition 2 applied to the block columns of an n × n matrix
partitioned into slabs ofm columns. The sizemmaximal submatrices are shown
in gray. Only the diagonal blocks (yellow) are not admissible. (Right) Strongly
admissible submatrices are shown in gray. Now the super/subdiagonal blocks,
as well as the bottom left/top right blocks (blue), are not admissible.

These submatrices are displayed in Figure 4.1 (left). The notion of HSS block

rows is obtained by applying Definition 2 to CT . In the literature on hierarchical

and H2 matrices [77], these blocks satisfy the weak admissibility criterion. In

contrast, the blocks depicted on the right loosely correspond to the strong ad-

missibility criterion. More details on the HSS format are given in Section 4.4.

Here, we prove that they have ϵ-ranks of size O(log n log(1/ϵ)). We remark

that Theorem 8 implies that the ϵ-ranks of the strongly admissible blocks can

be bounded independently of n.5

Theorem 10 (HSS submatrix bounds). Let CJK be a size m maximal submatrix of

C or CT , where 1 ≤ m ≤ n/2 and C is as in (4.5). Then, for 0 < ϵ < 1,

rankϵ(CJK) ≤ 2

⌈
2

π2 log (2n) log

(
4

ϵ

)⌉
. (4.13)

Proof. The proof is similar to the argument given in the proof for Theorem 9,

5This observation was made by Beckermann; details can be found in our manuscript [18].
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with the only difference being that the arcs AJ and AK are defined using J and

K from Definition 2. This leads to a slight modification in the bound on γ.

In many HSS compression schemes, one must also work with submatrices of

maximal submatrices. We make the simple but important observation here that

Zolotarev numbers also control the ϵ–ranks of these submatrices.

Corollary 5. Let X be any submatrix of the maximal size m submatrix CJK , where

1 ≤ m ≤ n/2 and the n× n matrix C is as in (4.5). Then, for 0 < ϵ < 1,

rankϵ(X) ≤ rankϵ(CJK). (4.14)

Proof. Observe that rank(DĴX − XDK̂) ≤ 2, where DĴ is a diagonal submatrix

of DJ , and DK̂ is a diagonal submatrix of DK . It follows from Theorem 2 that

the nonzero singular values of X are bounded such that

σ2k+1(X) ≤ Zk(λ(DĴ), λ(DK̂))∥X∥2.

Since λ(DĴ) ⊂ AJ and λ(DK̂) ⊂ AK , we have from (P5) in Lemma 1 that

Z(λ(DĴ), λ(DK̂) ≤ Z(AJ ,AK). The theorem then follows.

Related results. The authors of [33] also present an argument for the

low numerical rank of the off-diagonal submatrices of C. However, an ob-

servation made by Beckermann (see [18]) shows that this argument is in-

complete. We repeat the details here. Consider the submatrix CĴK̂ , where

Ĵ ⊂ J = {p, p+ 1, . . . , p+m− 1} ⊂ I0 and K̂ ⊂ K = I0 \ J . The authors in [33]

construct two concentric disks centered at c ∈ C, with radii selected so

that λ(DĴ) ⊂ {|z − c| ≤ rE}, λ(DK̂) ⊂ {|z − c| ≥ rF}, and rE/rF < 1 (see [33,

Sec.2.2, eq. 2.6]). They do not explicitly mention Zolotarev numbers, but their
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Figure 4.2: Left: The spectra λ(DJ) (blue dots) and λ(DK) (red dots) in (4.6) for
J = {1, 2, . . . ,m}, K = I0 \ J are contained in arcs AJ and AK . In this case, CJK

is a maximal m = 8 submatrix of the 64 × 64 matrix C. Our bounds depend on
the cross ratio of the end points of AJ and AK . Right: The normalized singular
values (dots) for maximal submatrices and HODLR submatrices ofC are plotted
on a log scale along with explicit bounds on their magnitudes from our theorems
(solid lines). Here, C is of size n = 2048. We plot singular values for maximal
submatrices (HSS columns) of size m = 128 (blue), m = 512 (grey), as well as
for superdiagonal HODLR submatrices where m = 128 (green) and m = 512
(purple). The bound for the singular values of the maximal submatrices only
depends on n and is shown in black.

argument is equivalent to finding k, where

Zk

(
λ(DĴ), λ(DK̂)

)
≤ (rE/rF )

k ≤ ϵ,

where the second inequality can be derived from potential theory [145] (see Sec-

tion 1.5.3). The argument in [33] is qualitative and gives no explicit formula for

c. However, a near-optimal choice seems to be given by c = exp(iπ
n
(2p+m−1)),

i.e., the midpoint of the arc AJ . With this choice,

rE = 2 sin

(
π
m− 1

n

)
, rF = 2 sin

(
π
m

n

)
,

and if m ∼
√
n, then the quantity (rE/rF )

k is only small when k ≥ m. In other

words, this approach does not show that in general, the off-diagonal blocks of C

are of small numerical rank. Similar problems occur in [112, Lemma 3], which

relies on results from [48, Sec. 2.2]. It follows that these approaches do not fully
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justify the use of HSS and HODLR-type submatrices. Even so, HSS partitioning

schemes are used and perform well in practice [33, 180]. Our theorems now

explain why this is the case.

4.3 An ADI-based HODLR approximation for the transformed

Toeplitz matrix

With bounds established that describe the rank structure of C, we now turn to

practical considerations. Our bounds can be used to implement compression

strategies and provide error estimates for superfast Toeplitz solvers that fol-

low the general outline of Algorithm 1. We provide descriptions for two such

solvers. The first is based on a HODLR approximation of C, and has the advan-

tage of being relatively simple to implement. Then in Section 4.4, we discuss in

more detail an HSS-based solver.

As we show in Theorem 9, the off-diagonal blocks of C are numerically of

low rank. One of the simplest ways to take advantage of the compressible off-

diagonal blocks of C is to use the HODLR hierarchical structure [76]. We pro-

vide a brief review of the format here. A matrix C̃ ∈ Cn×n is called a HODLR

matrix [76, 111] if it can be partitioned into equal-sized blocks

C̃ =

C̃11 C̃12

C̃21 C̃22

 , (4.15)

where C̃12, C̃21 have low rank representations, and C̃11, C̃22 can again be parti-

tioned with the same form as (4.15). This partitioning is continued until a min-

imum block size is reached. It is convenient to associate HODLR matrices with
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Figure 4.3: A HODLR approximation to C is found by partitioning C according
to the binary tree T (right) of depth 3. Every labeled block corresponds to a
vertex on the tree, with the root vertex (level ℓ = 0) corresponding to C as a
whole. Note that the row indices of a parent block are split among its children
blocks (e.g., the rows of C1 are shared by its children C3 and C4). Each labeled
block can be approximately represented in low rank form. The filled diagonal
blocks (blue) at the finest partition level require an explicit representation.

perfectly balanced binary trees. Let T denote a tree of depth ℓ̂. We number the

vertices of the tree consecutively, level by level, as in Figure 4.3, so that at level ℓ,

the vertices are numbered (2ℓ−1), . . . , (2ℓ+1−2). Each vertex v then has children

2v+1 and 2v+2. As shown in Figure 4.3, each v is associated with an off-diagonal

block Cv from the HODLR partition of C. Each v then naturally has an index set

associated with it, namely, the row indices defining Cv (see Figure 4.3). In nota-

tional terms, the indices are as follows: Set I0 = {1, . . . , n}. For each parent node

v, define an index set Iv of recursively so that so that Iv = {I2v+1, I2v+2} is length

m, with I2v+1 = {(Iv)1, . . . (Iv)m/2} and I2v+2 = Iv \ I2v+1 . Then, Cv = C(Iv, Iṽ),

where ṽ is the sibling node of v in T . We call the matrices Cv the HODLR blocks

of C.

To find a HODLR matrix that approximates C, we first partition C according

to the tree in Figure 4.3. Then, a low rank approximation to each off-diagonal

HODLR block Cv must be computed. Taken together, the collection of low rank

approximations toCv for all v > 0 in T is referred to as the HODLR factorization
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of C̃, where C̃ ≈ C. This completes Step 2 in Algorithm 1. Implemented naively

with a rank-revealing method such as the randomized SVD [79], the cost for

compressing the largest blocks C1 and C2 isO(n2r+nr2)6, where r is the rank of

the constructed approximant. By Theorem 9, we have that r = O(log n log(1/ϵ)).

However, we can use the fact that approximate solutions to (4.6) constructed

with fADI (see Section 1.4.2) are low rank approximations to Cv. The optimal

ADI shift parameters for applying fADI are the zeros and poles of the Zolotarev

rational function associated with Zk(AJ ,AK), and these have an exact formula

in terms of elliptic integrals (see Corollary 2). Given a tolerance parameter ϵv,

we choose

kv =

⌈
2

π2 log

(
2n√

min(2m− 1, n−2m+1)

)
log

(
4

ϵ

)⌉
,

as in Theorem 9, and then apply kv steps of fADI to (4.6) to construct C̃v =

C(kv)
v in low rank form. Here, rank(C(kv)

v ) ≤ 2kv and we are guaranteed that

∥Cv − C̃v∥2 ≤ ϵv∥Cv∥2. The cost for compressing the largest HODLR blocks

C1 and C2 of C with fADI is only O(n log n log(1/ϵ)), where we have used that

kv is on the order O(log n log(1/ϵ)). Once the HODLR approximation to C is

constructed, fast recursive procedures can then be used to find, for example, an

LU decomposition of C̃ and approximately solve C̃x̃ = b̃ in only O(r2n log2 n)

flops [113], completing Step 3 of Algorithm 1.

In addition to its Cauchy-like displacement structure, C has special self-

similarity structures that can be exploited to further reduce the overall cost of

Step 2 [113, 180]. If these structures are used, fADI only needs to be applied to

one block at each level ℓ in the tree T . The rest of the low rank factorizations

can be generated without any additional computations using the self-similarity

6If a fast matrix-vector product for C is used, the cost is O(nr log n+ nr2).
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structure. If there are O(log n log(1/ϵ)) levels in T , then total cost for construct-

ing a HODLR approximation to C is less than O(n log2 n log2(1/ϵ)). This is not

the main observation of this work; we refer to our manuscript [18] for details.

4.4 An ADI-based HSS approximation to the transformed

Toeplitz matrix

Significant savings in Steps 2 and 3 of Algorithm 1 can be gained by using

more complicated hierarchical matrix formats. Here, we consider the HSS for-

mat [16, 76, 111]. An HSS matrix C̃ ≈ C is constructed by finding low rank

approximations to the HODLR blocks of C that satisfy special recursive rela-

tions across partition levels. Specifically, let every low rank block in the HODLR

partition of C̃ be expressed as C̃v = UvBv,ṽ, V
∗
ṽ , where for simplicity, we assume

each block has a rank of r (so Bv,ṽ is r × r).

We require that every parent block at level ℓ ≥ 1 has low rank factors of the

form

Uv =

U2v+1 0

0 U2v+2

Rv, Vv =

V2v+1 0

0 V2v+2

Wv, Rv,Wv ∈ C2r×r. (4.16)

The so-called translation matrices,Rv andWv, serve to recompress the factoriza-

tion and link Uv to the low rank factors of its children blocks [111]. As a result,

factors from finer partition levels are always nested within factors constructed at

coarser levels. For example, following the partitioning and submatrix labeling

scheme shown in Figure 4.3, an approximate HSS factorization for the subma-
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trix C1 ≈ U1B1,2V
∗
2 must be of the form

U7

U8

U9

U10


︸ ︷︷ ︸

4m×4p

R3

R4


︸ ︷︷ ︸

4p×2p

R1︸︷︷︸
2p×p

B12︸︷︷︸
p×p

W ∗
2

W ∗
5

W ∗
6




V ∗
11

V ∗
12

V ∗
13

V ∗
14


,

(4.17)

where the blocks at the finest partition (level ℓ̂) are of sizem×m, withm = n/2ℓ̂.

Notice that for each v on level ℓ = 1, . . . , ℓ̂−1, we only require the construction

and storage of the small matrices Rv, Wv, and Bv, since Uv and Vv can be re-

cursively constructed from factors at deeper levels. At the finest level ℓ̂, we

must store the diagonal m × m blocks that cannot be compressed, as well as

Uv, Bv, and Vv for each of the 2ℓ̂ vertices. We refer to the collection of these fac-

tors as the HSS factorization of C̃.

4.4.1 Superfast HSS-based solvers

Once C̃ ≈ C is known via its HSS factorization, storage requires only O(nr)

memory and the matrix-vector product C̃y can be found in only O(nr)

flops [111, Alg. 1]. Crucially, the HSS structure makes solving C̃x̃ = b̃ especially

efficient: A ULV factorization for HSS matrices is introduced in [34]. The ‘U’

and ‘V’ refer to sequences of unitary factors that are applied to partially trian-

gularize certain blocks C̃ at each level of T . This is done in a way that takes

advantage of the nested hierarchical structure of the HSS factors. Once the ULV

factorization is known, a fast merge and back–substitution routine, followed by

a forward-substitution scheme, can be used to solve the linear system. If blocks

at the finest level are size m ≈ 2r, and rank(C̃v) ≤ r for all v > 0 in T , then
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the ULV factorization and solve only require O(nr2) and O(nr) flops, respec-

tively [180].

In [180], a related ULV-like solver is introduced that relaxes the requirement

that the factors used to triangularize blocks of the HSS representation C are

unitary. If this method is implemented, it saves about a factor of 2 over the

standard ULV solver [180, Sec. 3.6]. For this approach to work, every Uv, Vv, Rv,

and Wv in the HSS factorization must have the special ‘interpolative structure’

shown in (4.19). Our displacement-based interpolative decomposition ensures

that this is the case. For details (and explanatory pictures) about the ULV and

ULV-like solvers, we refer the reader to [34, 180]. Our focus here is on computing

the HSS factorization so that either of these solvers can be applied.

4.4.2 HSS rows and columns and the HSS rank

We are interested in an efficient strategy for constructing an HSS factorization.

It is standard to work with the special HSS rows and HSS columns for this pur-

pose [111, 179]. Illustrations of these submatrices are given in Figure 4.4. Let

v be a vertex at level ℓ in the tree T . We associate v with the τ × τ HODLR

block Cv (see Figure 4.3). We denote by Crow
v the submatrix C(Iv, I

c
v), where Iv

are the row indices of Cv, and Icv = I0 \ Iv. This selects the block row containing

Cv, but excludes the τ × τ diagonal block in the row, as shown in Figure 4.4.7

In the same way, we define the HSS column Ccol
v as C(Icv , Iv). Note that the HSS

columns are maximal size τ submatrices of C (the rows are maximal size τ sub-

matrices of CT ) as defined in Definition 2. Theorem 10 supplies explicit bounds

7In some texts, the HSS row Crow
v is instead defined instead as C(Iv, : ), with the order τ

diagonal block in C(Iv, : ) set identically to zero [111].
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(a) (b) (c) (d)

Figure 4.4: Various HSS rows and columns for a tree of depth 3. In (a), the two
HSS rows Crow

9 (blue) and Crow
10 (red) are shown. These are the children of the

row Crow
4 , shown in (b). The two HSS columns Ccol

5 (red) and Ccol
6 (blue) in (c)

are children of the parent Ccol
1 in (d).

on rankϵ(C
row
v ), rankϵ(C

col
v ) for every vertex v. Crucially, these bounds are also

applicable for submatrices of Crow
v and Ccol

v (see Corollary 5).

As discussed in [179], the construction of the HSS matrix C̃ with each block

C̃v of rank at most r is possible if and only if every HSS row and column of

C̃ is of rank at most r. We define the (ϵ, T )-HSS rank of C as r such that

rankϵ(C
row
v ), rankϵ(C

col
v ) ≤ r for all v ̸= 0 in T . An immediate consequence of

Theorem 10 is that an upper bound on the (ϵ, T )-HSS rank of C is given by the

bound in (4.13).

4.4.3 Interpolative decompositions

We now discuss how to construct an approximate HSS factorization of C. A

standard approach involves the use of interpolative decompositions [111, 180].

The structure of the interpolative decompositions is particularly important if

one wants to apply the ULV-like solver from [180, Sec. 3.4] in Step 3 of Algo-

rithm 1. Interpolative decompositions can be constructed with extraordinary ef-

ficiency using fADI. We briefly review the general use of interpolative decompo-

sitions in forming HSS factorizations. Then, in Section 4.4.4, we describe fADI-
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based interpolative decompositions that lead to a displacement-based method

for finding HSS approximations to C.

Interpolative decompositions on leaf nodes

Suppose that v is a leaf node on T that corresponds to the blockCv, of sizem×m.

We seek C̃v, a low rank approximation to Cv. An interpolative decomposition is

a type of low rank factorization that takes the form [35]

C̃v = UvBV
∗
ṽ , B = C(Jv, Kṽ), (4.18)

where Jv and Kṽ are each a small subset of indices, and Uv, Vṽ are interpolative

decompositions. To compute Uv and Jv for each v, one requires an approximate

one-sided row interpolative decomposition [35] of the HSS row Crow
v , which is

of size m × n−m. Supposing rank(Crow
v ) ≤ r, this process chooses a subset of

r rows as vectors that approximately span the rowspace of Crow
v [35, 111]. This

results in a factorization of the form

Crow
v ≈ C̃row

v = UvC
row
v (J̃v, : ) = P

Ir
R

Crow
v (J̃v, : ), (4.19)

where P is a permutation matrix, Ir is an r×r identity matrix, and J̃v is a subset

of the row indices of Crow
v . Recalling that Iv are the row indices of Cv with

respect to C, we abuse notation and say that Jv = Iv(J̃v), meaning that Jv is the

subset of Iv that is indexed by J̃v. Similarly, a one-sided column interpolative

decomposition [35] can be applied to Ccol
v to find Vv and Kv in (4.18). We refer to

the structure of Uv as an ‘interpolative structure’.
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Merging HSS rows and columns

Once the decomposition (4.18) is known for each block at the finest level ℓ̂ on

T , factors associated with the non-leaf nodes of T can be determined from

them [111]. For illustration’s sake, let v be a vertex on T at level ℓ = ℓ̂−1.

Then, as before, C̃v = UvBV
∗
ṽ . In this case, Uv and Vṽ are as in (4.16), and it only

remains to determine Rv, Wṽv, and the indices defining B = C(Jv, Kṽ). Con-

sider the associated HSS row Crow
v , which has children rows Crow

2v+1, Crow
2v+2. Since

Crow
τ ≈ UτC

row
τ (J̃τ , : ), τ = 2v + 1, 2v + 2, we can write

Crow
v ≈

U2v+1 0

0 U2v+2

Crow
v (Ĵ , : ), (4.20)

where Ĵ = {J̃2v+1 ∪ J̃2v+2} is the index set with respect to the block Crow
v that

selects the 2r rows indexed by J̃2v+1 and J̃2v+2 (see Figure 4.5, (b)).

A row interpolative decomposition is applied to find the approximation

Crow
v (Ĵ , : ) ≈ RvC

row
v (J̃v, : ), where J̃v ⊂ Ĵ , |J̃v| = r. This chooses a size r subset

of the 2r rows comprising Crow
v (Ĵ , : ), and also ensures thatRv has the interpola-

tive structure. We set Jv = Iv(J̃v). As shown in Figure 4.5, this process chooses

a subset of row vectors that approximately span the rowspace of Crow
v . We may

substitute RvC
row
v (J̃v, : ) as an approximation for Crow

v (Ĵ , : ) in (4.20). An anal-

ogous method is applied to Ccol
v to find Wv and Kv. The resulting factorization

satisfies the nested structure shown in (4.16). This procedure can be repeated at

each level as we traverse T from the bottom up in order to find an approximate

HSS factorization of C [111].
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(a) (b) (c)

Figure 4.5: (a) Selected row vectors indexed by J̃τ for the two HSS rows
Crow

τ ≈ UτC
row
τ (J̃τ , : ), τ = 2v+1 (red) and τ = 2v+2 (blue). (b) The coarser par-

ent HSS row Crow
v can be represented using a low rank factorization involving

the combined row vectors (colored lines) of its children rows. (c) We apply an-
other interpolative decomposition to represent the parent HSS row with a low
rank factorization involving a subset of the available row vectors.

4.4.4 ADI-based interpolative decompositions

Interpolative decompositions can be constructed in many ways. A basic ap-

proach involves computing a (strong) rank-revealing QR decomposition of each

block being compressed [35, 72]. However, this is expensive. For example, if v

is a leaf node, then Crow
v is of size m × (n − m), so the cost is O(nm2), and

there are O(n) leaf nodes. Using randomized sampling [79] with a carefully de-

vised sample updating strategy improves the cost significantly [111, 180], but

even this approach requires an initial precomputation that multiplies C by an

n × O(r) Gaussian random matrix, where r is the (ϵ, T )-HSS rank of the HSS

approximation to C.8 However, due to its displacement structure, a row in-

terpolative decomposition for Crow
v can be found using fADI with a cost that

depends only on m and r, not n. This is comparable in cost to proxy surface

methods [35, 89, 116, 181]. A key reason this is possible is that when fADI con-

structs a rank r approximation of the form Crow
v ≈ ZW ∗, the construction of Z

is decoupled from the construction of W (see Section 1.4.2). Here, Z is of size

m × r, and to find a one-sided interpolative decomposition of Crow
v , we only

actually need to compute Z explicitly.

8In [180], this step is improved with a fast matrix-vector multiply routine for C based on its
relationship to the Toeplitz matrix T .
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To illustrate this, set X = Crow
v , where v is a leaf node of T and X is

of size m × (n − m). We know from (4.5) and Theorem 10 that X satis-

fies DJX −XDK = L̃JH̃
∗
K for an index set (J = Iv, K = Icv). After k iterations

of fADI, the approximation X ≈ X(k) = ZW ∗ is constructed, where Z ∈ Cm×r,

with r = 2k. As we shall see, the explicit computation of the large matrix W is

not needed. The construction of Z only involves the m × 2 matrix L̃J and the

m×m diagonal matrix DJ (see (1.8)), and it therefore requires onlyO(mr) flops.

An approximate row interpolative decomposition is computed using a piv-

oted QR decomposition of Z∗. Specifically, we find unitary Q ∈ Cr×r, lower tri-

angular R ∈ Cm×r, and a permutation matrix P , so that Z = PRQ. Ideally, the

permutation matrix is selected to ensure that Ra in the partition R = [RaRb]
T is

as well-conditioned as possible, where Ra is of size r × r. It follows that

X ≈ ZW ∗ = P

 Ir

RbR
−1
a

RaQW
∗ ≈ P

 Ir

RbR
−1
a


︸ ︷︷ ︸

Uv

X(J̃v, : ), (4.21)

where J̃v are the row indices selected by P T . We see that (4.21) has the same

interpolative structure as (4.19).

For rows at the non-leaf level, the process is similar. We work with subma-

trices of the form X = Crow
v (Ĵ , : ), as in (4.20), where Ĵ = {J̃2v+1 ∪ J̃2v+2}. Now

X satisfies

DIv(Ĵ)
X −XDK = L̃Iv(Ĵ)

H̃∗
K . (4.22)

We can again use fADI to compress X , and then use (4.21) rewrite this compres-

sion as an interpolative decomposition.

Error bounds for ADI-based interpolative decompositions. The next

lemma concerns the stability of an approximate row interpolative decomposi-
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tion. The error bound depends on the method used to compute the QR fac-

torization of Z in (4.21). In particular, we must control the magnitude of the

entries in RbR
−1
a . As a matter of practicality, it is safe to use column-pivoted

QR (CPQR) [65, Sec. 5.4].9 However, bounds on |RbR
−1
a |jk produced via CPQR

account for an unlikely worst-case scenario, and are exponential in r [72]. If a

strong rank-revealing QR (SRRQR) algorithm is used instead, then the magni-

tude of the entries in RbR
−1
a can be bounded by a small factor algebraic in r.

The SRRQR subroutine described in [72, Alg. 4, 5] and used in [35] gives the

following bound:

|RbR
−1
a |jk ≤

√
r, 0 ≤ j ≤ m− r − 1, 0 ≤ k ≤ r − 1, (4.23)

This leads to the following lemma for ADI-based row interpolative decomposi-

tions. An analogous result holds for column interpolative decompositions.

Lemma 6. Let X be a submatrix of a maximal size m submatrix of C, where C is as

in (4.5) andX ∈ Cm×ñ,m ≤ ñ. If rankϵ(X) ≤ r = 2k ≤ m, then there is a fADI-based

approximate interpolative decomposition of X with rank ≤ r that satisfies

∥X − UvX(Jv, : )∥2 ≤ 4µ−2k
0

(
1 +

√
r + r2(m− r)

)
∥X∥2, (4.24)

where Uv is as in (4.21), and µ0 is given in Theorem 10.

Proof. Since X is submatrix of a maximal submatrix of C, it satisfies (4.22) for

some index sets J , K. We apply k iterations of fADI to (4.22) to find X ≈ ZW ∗,

with Z of size m× r. By Corollary 5 and Theorem 10, we have that

∥X − ZW ∗∥ ≤ 4µ−2k
0 ∥X∥2. (4.25)

9Despite famous examples where CPQR fails to produce a rank-revealing factorization, it is
considered highly reliable in practice [72].
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We then find ZW ∗ = UvX(Jv, : ), Jv ⊂ J , as in (4.21), using SRRQR. It follows

that

∥X − UvX(Jv, : )∥2 ≤ ∥X − ZW ∗∥2 + ∥ZW ∗ − UvX(Jv, : )∥2.

According to (4.21), ZW ∗ = UvRaQ
∗W ∗, so we have that

∥ZW ∗ − UvX(Jv, : )∥2 ≤ ∥Uv∥2∥RaQ
∗W ∗ −X(Jv, : )∥2 ≤ ∥Uv∥2∥X − ZW ∗∥2,

where the last inequality follows from the fact that RaQ
∗W ∗ −X(Jv, : ) is a

submatrix of ZW ∗ −X . Since SRRQR was used to construct RbR
−1
a , we have

by (4.23) that ∥Uv∥F ≤ (r + r2(m− r))1/2. The lemma follows from (4.25).

As with the HODLR matrix construction, one can take further advantage

of special structures unique to C. For example, one can compute the UvBvVv

factors at the leaf level for only one leaf, and then use self-similarity proper-

ties to generate all of the additional leaf factors with no additional computation

(see [18]). If it is not important to retain the interpolative structure of the HSS

factors, then there are even more ways to take advantage of the self-similarity

structure of C [180].

4.4.5 A practical ADI-based HSS solver

In this section, we discuss our practical implementation of Algorithm 1 that

uses the ADI-based interpolative decomposition method from Section 4.4.4 to

construct the HSS factors comprising C̃, where C̃ ≈ C. Our Toeplitz solver is

implemented in MATLAB [18], and can be executed with the single line of code

x = Toeplitz_solve(trow, tcol, b, tol), where trow, tcol are the

first row and column of T . This finds x in Tx = b with a relative error in the

2-norm that is approximately given by tol = ϵ.

96



n

se
co

nd
s ϵ ∥C − C̃∥2/∥C∥2 ∥x− x̂∥2/∥x∥2

10−3 1.887× 10−3 5.648× 10−3

10−6 4.567× 10−7 9.110× 10−7

10−9 3.623× 10−12 4.611× 10−11

10−12 6.445× 10−14 3.431× 10−13

Figure 4.6: Left: Time in seconds required for constructing the HSS factorization
of C is plotted against n, where C is size n × n. We compare the ADI-based
factorization described in Section 4.4.4 with the randomized sampling method
described in [180]. Tests were performed for two different tolerance parameter
settings. Right: The ADI-based fast solver for Tx = b comes with explicit low
rank approximation error bounds and can be tuned to choose the (ϵ, τ)-HSS rank
adaptively to a given tolerance. The table displays the relative accuracy of C̃,
an approximate HSS factorization of C in (4.5), and the relative accuracy of the
computed solution x̂, for various choices of ϵ. For these tests, Toeplitz matrices
T and right-hand sides b were chosen randomly.

Since we have explicit bounds on the low rank approximation errors in

our construction, our implementation is adaptive to a given tolerance ϵ. To

control the error, we use the bound in Theorem 10 and determine r so that

rankϵ(CJK) ≤ r for each compressed submatrix CJK . Along with these bounds,

we automatically compute optimal ADI shift parameters that construct approx-

imations that achieve the bounds. This simplified strategy is designed so that

∥C − C̃∥2 ≈ ϵ∥C∥2. It works well in practice, as demonstrated in Figure 4.6

(right). One could instead devise a more elaborate scheme that guarantees (in

infinite precision) that ∥C − C̃∥2 ≤ ϵ∥C∥2.

To construct C̃ in Step 2 of Algorithm 1, we use standard CPQR, though

one could implement the procedure with SRRQR if desired. Once the factors

of C̃ are known, we apply the ULV solver from [34] to solve C̃x̃ = b̃ with only

O(nr) flops, where r is the (ϵ, τ)-HSS rank of C, computed a priori via (4.13).
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Since we preserve the special interpolative structure of the factors in our HSS

construction, one could use instead the ULV-like solver described in [180].

A detailed complexity analysis in Appendix A reveals that the cost for Step

2 of Algorithm 1, i.e., the construction of C̃, is O(nr2) = O(n log2 n log2(1/ϵ)).

The overall complexity of Algorithm 1 is identical to this. We note that our im-

plementation takes advantage of the similarity structure of C at the leaf level,

though this isn’t necessary for achieving the O(n log2 n log2(1/ϵ)) complexity

and is not included in our complexity analysis. Asymptotically, our complexity

matches the state of the art Toeplitz solver in [180]. Numerical results in Fig-

ure 4.6 confirm that the different compression schemes also perform similarly

in practice. Since our HSS factorization allows for the use of the same inversion

methods to solve C̃x̃ = b̃ as in [180], the overall performances of these methods

are similar.

The solver also performs comparably with [180] in terms of stability. For

well–conditioned matrices, the ADI-based method is accurate (see Figure 4.6,

right). In Figure 4.7, we compare the relative error ∥x̂ − x∥2/∥x∥2 achieved by

the two methods for solving Tx = b with an ill-conditioned choice of T . In

the experiment, we choose T as the KMS Toeplitz matrix generated from a vec-

tor t = (t−n+1, · · · , tn−1) with entries tk = ϕ|k| [167], where ϕ = 1− 10−j . T

is well–conditioned when j = 1, but as j increases, T becomes extremely ill-

conditioned. When j = 10 and n = 4096, ∥T∥2∥T−1∥2 ≈ 10−13. We set the toler-

ance parameter to ϵ = 10−11 in all cases.
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Figure 4.7: The relative error of the computed solution x̂ to Tx = b, where T is
the KMS matrix [167] of size n× n, is shown for various choices of n. The error
is plotted against j, where ϕ = 1 − 10−j and the entries of T are of the form
tk = ϕ|k|. As j increases, T becomes increasingly ill–conditioned. The accuracy
of the fADI-based solver is compared with the accuracy of the solver from [180].

4.5 Related linear systems

Our approach can be extended and applied to related linear systems with a cost

that remains the same with respect to r and depends linearly on the displace-

ment rank ρ. As an example, consider the Vandermonde matrix with entries

Vjk = γk−1
j , 1 ≤ j, k ≤ n. The numbers (γ1, . . . , γn) are referred to as the “nodes”

of V . If N = diag(γ1, . . . , γn), then

NV − V S = acT , (4.26)

where S is as in (4.2) and a, c ∈ Cn×1. One can use (4.26) to show that when the

nodes are real–valued, V is a low rank matrix with rapidly decaying singular

values [19]. Bounds on the ϵ-rank of V can also be derived when the nodes lie in

a set contained either inside or outside the unit disk (see Section 3.5.1). When the

nodes coincide with a shifted set of n roots of unity, then V is a scaled discrete

Fourier transform matrix [37], and when they lie elsewhere on the unit circle,
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V is called a nonuniform discrete Fourier transform matrix. In configurations

where the nodes are not close to an equally spaced grid, V can be ill-conditioned

and it may be desirable to have a direct solver for V x = b with a cost indepen-

dent from the condition number of V .

Since N is already diagonal, we diagonalize the Sylvester equation in (4.26)

by right-multiplying the equation by F from (4.4). Setting C = V F∗, we have

that

NC − CD = ac̃∗, (4.27)

where c̃ = Fc and D = FSF∗ = diag(ω2, . . . , ω2n). The matrix C is Cauchy-like,

and if one assumes that the points {λj}nj=1, where γj = e2πiλj/n, are restricted so

that for each j, |λj − j| ≤ β < 1, then arguments similar to those given for

Theorem 10 show that C is well-approximated by an HSS matrix. In particular,

the same argument shows that if CJK is a maximal submatrix of C, then

rankϵ(CJK) ≤
⌈
2

π2 log

(
2n

1− β

)
log

(
4

ϵ

)⌉
.

If we drop the assumption that |λj − j| ≤ β < 1 and allow the nodes γj to occur

anywhere (remaining distinct from one another), it is no longer guaranteed that

V has low rank off-diagonal submatrices. With the nodes irregularly clustered,

it is possible, for example, that the arcs associated with the indices of a HODLR

submatrix of C are not disjoint from one another. However, V still contains com-

pressible submatrices. We must instead use a more general partitioning scheme

based on a different tree structure (e.g., a quadtree) and an admissibility crite-

rion [16, 76]. Fortunately, admissibility is easy to check. Given a submatrix CJK ,

we associate J and K with arcs AJ , AK on the unit circle, where {γj}j∈J ⊂ AJ ,

and {ω2k}k∈K ⊂ AK . In the simplest setup, we choose a “separation parameter”,

0 < α < 1/2n, and say that CJK passes the admissibility test if dist(AJ ,AK) > α,
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where

dist(AJ ,AK) = min{|sj − sk|, sj ∈ AJ , sk ∈ AK}.

We may then derive a theorem similar to Theorem 10 where the numerical rank

of CJK is bounded in terms of α and n. Future work will consider the develop-

ment of such methods for the rectangular and 2D cases.

Another example of a linear system Xy = b where these methods can be

applied is when X = T + R, where T is Toeplitz and R is Hankel. As shown

in [100], one has that

rank(Y0,0X −XY1,1) ≤ 4, Yυ,δ =



υ 1 0 · · · 0

1 0 1
. . .

...

0 1
. . .

. . . 0
...

. . .
. . . 0 1

0 · · · 0 1 δ

 .

The matrices Y0,0 and Y1,1 can be diagonalized with discrete sine and discrete

cosine transforms, respectively, in onlyO(n log n) operations. Using these trans-

formations, one may relate X to a Cauchy-like matrix X̃ satisfying

DSX̃ − X̃DC = L̃H̃∗

for some generators L̃, H̃ , each of rank ≤ 4. Here,

DC = 2diag

(
1, cos

(π
n

)
, · · · , cos

(
(n− 1)π

n

))
, (4.28)

DS = 2diag

(
1, cos

(
π

n+ 1

)
, · · · , cos

(
nπ

n+ 1

))
, (4.29)

so the spectra λ(DS) and λ(DC) are interlaced on the real line. An argument

using Theorem 2 can be applied to bound the ϵ–ranks for various off-diagonal

submatrices of X̃ , and fADI-based methods can be applied to construct rank-

structured approximations to X̃ . More examples of matrices with fast diagonal-

izable displacement structures can be found in [100].
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CHAPTER 5

DATA-DRIVEN RATIONAL FUNCTION APPROXIMATION

The previous three chapters in this dissertation focused on one particularly

important rational approximation problem that arises in numerical linear alge-

bra. The original solution to this problem was developed in the 1800s using

classical techniques from analysis [3, 182], long before the computational ques-

tions that it pertains to had ever been posed. Advancements on these compu-

tational questions have often depended on knowledge of the classical solution.

In this chapter,1 we consider a very different type of approximation problem.

We seek to reliably and automatically generate rational approximations to func-

tions, even though we have no a priori knowledge about the types, locations, or

numbers of singularities they possess. In particular, we develop methods that

apply rational approximation in order to reconstruct signals from samples that

may be corrupted by noise. Our construction algorithms are complemented by

the development of a new software system for computing adaptively with 1D

trigonometric rational functions and their Fourier transforms.

5.1 Introduction

Recovering functions from noisy, incomplete, or corrupted samples is a ubiq-

uitous task in signal and data processing [99]. Here, we recover underlying

signals that contain impulses, shocks, or other algebraic singularities that can

cause traditional Fourier-based methods to underperform or fail. Examples of

these types of signals include sensor monitoring and event detection tasks in

1This chapter is related to a manuscript [40] authored by Anil Damle, Alex Townsend, and
me. I am the lead author of the manuscript and developed the ideas and examples therein. I
also developed and wrote the software package based on these ideas.

102



Barycentric form Exponential sums
Differentiation (closed-form formula) [24] Filtering and recompression [81]

Imputing missing data [119] Pole symmetry preservation [28]
Stable evaluation [8, 87] Robustness to noise [129, 135]

Rootfinding [119], identifying extrema convolution [135], cross-correlations

Table 5.1: Operations that are efficient and robust in the two representations.
By having both representations and toggling between them, we can efficiently
compute a range of operations in signal processing.

seismology and oceanography [36, 97, 80, 110, 152], biomedical signal process-

ing [54, 55, 62, 102], and time evolution along rays in nonsmooth media [32, 138].

We present a novel computing framework based on data-driven approximation

with two complementary representations: (1) barycentric trigonometric rational

approximations and (2) their Fourier transforms, which take the form of short

sums of complex exponentials. Toggling between these two representations lets

us overcome computational and data-related challenges.

Several families of functions, including rationals, wavelets, and radial ba-

sis functions, are well-suited for resolving sharp features in data and modeling

phenomena with slow-decaying spectral content [43, 163, 169]. However, meth-

ods that employ these functions often require the a priori selection of shape

parameters [139], mother/father wavelets [43], initial pole configurations [74],

or special rational basis functions [55]. One must carefully select parameters to

avoid numerical instability and computational inefficiency. In contrast to this,

we introduce flexible, data-driven, general-purpose software tools that can be

applied without special knowledge about the locations or types of singularities

in the signal. Our methods construct trigonometric rational representations of

signals, and we develop a collection of algorithms for computing adaptively

and efficiently with them. Our approach combines adaptations of two primary

approximation methods, the AAA algorithm for rational approximation [119]
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and the Fourier inversion method [28]. Both of these methods can efficiently

and automatically construct near-optimal rational approximations to functions

without tuning parameters, and we develop a framework that unifies the rep-

resentations they construct. The result is an automatic rational approximation

method that enjoys two main advantages: (1) it is more robust to various forms

of corruption than either method alone, and (2) taken collectively, the two repre-

sentations are efficient for performing a range of fundamental post-processing

operations (see Table 5.1).

5.1.1 The approximation problem

Let f : [0, 1) → R be an unknown continuous periodic function of bounded

variation, and suppose that for some integer N , we observe 2N + 1 noisy sam-

ples of f at T := {xj}2Nj=0, i.e., yj = f(xj) + sj for 0 ≤ j ≤ 2N . Here, sj can

be: (i) additive white Gaussian noise (i.i.d. normally distributed), (ii) popcorn

noise (sparsely corrupted or arbitrarily large errors), or (iii) bounded determin-

istic errors. Throughout, we assume ∥f∥∞ = 1, where ∥ · ∥∞ is the infinity norm

on [0, 1), and that the mean value of f over [0, 1) is 0. Our central approxi-

mation problem is to fit a special class of trigonometric rational functions (see

Section 5.2) to the 2N + 1 samples to construct rm, a type (m−1,m) trigonomet-

ric rational where m is selected adaptively so that the sampling error satisfies

maxxj∈T |f(xj)− rm(xj)| ≤ ϵ, where 0 < ϵ < 1 is a tolerance parameter.

In practice, samples of f are often available under far from ideal circum-

stances. For example, T may consist of poorly distributed (i.e., not equally-

spaced) points due to missing or corrupted data, N may be too small to ade-
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quately resolve features of interest, or frequencies of interest may be cut off or

otherwise distorted during observations. The approximation problem may also

be ill-conditioned, so that regularization is needed to define and numerically

construct a meaningful solution.

5.1.2 Software

Once a rational approximant is constructed, we want to reliably compute with

it. Answering the following questions has shaped the overall development of

our software:

1. Which applications are of importance? Our method is a general-purpose ap-

proach for working with periodic univariate signals. It works with noisy

samples, and requires no a priori knowledge about features of the signal,

such as the locations or types of singularities. The methods are designed to

be flexible enough for use in a range of applications that involve the detec-

tion and identification of events (e.g., ECG and geophone monitoring tasks,

engineering and financial applications where change-point detection is im-

portant, and in the analysis of some dynamical systems, such as periodic

contagion modeling).

2. What properties should our approximants have? Like f , we want approximants

to be periodic, real-valued, and continuous on [0, 1). It is for this reason that

we employ trigonometric rational functions, which are the periodic analogue

of rational functions.

3. What form of approximant should we use? Trigonometric rationals can be ex-

pressed in many forms, but not all of these forms are numerically stable.
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For stable evaluation and rootfinding, we use the barycentric formula [26].

For efficient recompression and operations carried out in Fourier space, we

represent the Fourier transforms of our trigonometric rational approximants

using short sums of weighted complex exponentials (see Lemma 7).

4. Which tools should we provide? We provide a basic set of computa-

tional tools. This includes simple algebraic operations (addition, prod-

ucts), calculus-based operations (integration, differentiation), and tools

for filtering, (de)convolving, rootfinding/polefinding. Whenever possi-

ble, we automatically recompress representations as trigonometric ratio-

nals/exponential sums to maintain efficiency. These tools can be combined

to perform more complicated tasks.

Accompanying this work is the open-source code REfit [40], which is written

in MATLAB and uses two classes called rfun and efun. Our software is largely

inspired by the Chebfun software package [45, 177]. An rfun object stores a

representation of f as a barycentric trigonometric rational function. An efun

object stores a representation of the Fourier transform of f as a weighted sum of

complex exponentials. After an rfun or efun object is constructed, a function

can be manipulated and analyzed through the operations implemented in the

package (see Table 5.2). The commands are overloaded so that they can be ap-

plied to either type of object, and binary operators can be used between objects

of different type.

Table 5.2: A selection of REfit commands.
command Operation

+, -, .*, ./ basic arithmetic
diff(·), cumsum(·) differentiation, indefinite integration

conv(·) convolution
corr(·,·) cross-correlation
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The rest of this chapter is organized as follows: In Section 5.2 we begin by

briefly reviewing trigonometric rational functions and the barycentric form. We

then introduce the trigonometric variant of the AAA algorithm that we use to

construct barycentric trigonometric interpolants (Section 5.2.3). In Section 5.2.4,

we apply the regularized Prony’s method (RPM) to construct approximations

in Fourier space. In Section 5.3, we introduce stable Fourier and inverse Fourier

transform methods for moving between representations in the time and fre-

quency domains. Examples and descriptions of the algorithms for computing

with these representations can be found in Sections 5.4 and 5.5, respectively.

5.2 Trigonometric rational functions and their Fourier trans-

forms

We begin with a review of trigonometric rationals and the two representations

that we use: (1) the barycentric form in the time domain, and (2) sums of expo-

nentials in Fourier space.

The trigonometric rationals are the periodic analogue of rational func-

tions [86, 95]. A trigonometric rational of period 1 is the quotient of two trigono-

metric polynomials of period 1, i.e., a function of the form

r(x) =
pℓ(x)

qm(x)
=

∑ℓ
j=−ℓ aje

2πijx∑m
j=−m bje

2πijx , x ∈ [0, 1). (5.1)

We call r a type (ℓ,m) trigonometric rational function. We follow the convention

that unless stated explicitly, a type (ℓ,m) function is in reduced form, meaning

that pℓ and qm have no zeros in common. We restrict our interest to the family

of period 1 trigonometric rationals rm of type (m−1,m) that are real-valued and
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Figure 5.1: Left: A trignometric rational function rm approximating the shifted
and scaled cubic B-spline on the interval [0, 1) is constructed and plotted. The
knots of the spline occur at the dotted vertical lines. Here, m = 44. Away
from the singularities, the absolute approximation error is on the order of 10−11.
Approximate knot locations (black dots) are automatically computed using the
poles of the rational r̃m(z) = rm(x), where z = e2πix(see (5.3)). Right: The poles
of r̃m of magnitude ≤ 1 are plotted in the unit disk in the complex plane. They
cluster toward the points e2πixk on the unit circle, where each xk is a knot in the
spline.

continuous on [0, 1). Furthermore, we assume that the roots of the denominator

qm are simple. Under these assumptions, if ηj is a root of qm, then so is its com-

plex conjugate ηj , as well as ηj ±K, where K is any integer. We say that a pole

of rm is any root, ηj , of qm such that 0 ≤ Re(ηj) < 1. In the same way, any root

of pm−1 with a real part in the interval [0, 1) is called a zero of rm.

5.2.1 Why trigonometric rationals?

Three key properties of this family of functions make them ideal for our

setting. First, like standard rational functions, they are especially effective

at resolving singularities. For example, for particular choices of f , such as

f(x) = |x− 1/2| − 1/4, it is known that trigonometric rationals of type (m,m)

can converge to f at a root-exponential rate with respect to m [163]. Second,
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these functions can be represented efficiently in Fourier space. We make exten-

sive use of the following fact:

Lemma 7. Let rm(x) be a type (m−1,m) nonzero trigonometric rational function that

is real-valued and continuous on [0, 1) with exactly 2m simple poles. Let {ηj}mj=1 denote

the collection of poles with Im(ηj) > 0. If the Fourier coefficients of rm are given by

{(r̂m)k}∞k=−∞, then there exist ωj such that

(r̂m)k = Rm(k) :=


∑m

j=1 ωje
αjk, k ≥ 0,∑m

j=1 ωje
−αjk, k < 0,

(5.2)

where αj = 2πiηj . Here, ωj is the complex conjugate of ωj .

Proof. See [155, Ch. 4].

Lemma 7 shows that the Fourier series of rm can be represented as sum of

m weighted decaying exponentials. We say that F(rm) = Rm is the Fourier

transform of rm, and similarly, F−1(Rm) = rm is the inverse Fourier transform

of Rm.

Third, the properties of trigonometric rationals can be used for feature de-

tection. For example, in Figure 5.1, we plot the poles zj = e2πiηj , Im(ηj) > 0, of

the rational function

r̃m(z) =
zmpm−1(z)

zmqm(z)
, z = e2πix, (5.3)

where rm(x) = pm−1(x)/qm(x) is an approximation to a shifted and scaled uni-

form cubic B-spline [41] f with five equally-spaced knots at x = {1/6, . . . , 5/6}.

The knots are not easily identifiable in a plot of f , but the poles of r̃m, which

are chosen adaptively via Algorithm 3, cluster toward the singularities, reveal-

ing their locations. Using the five poles in {zj}mj=1 with the largest magnitudes,
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estimates of the knot locations are given by x̃k = arg(zk)/2π for 1 ≤ k ≤ 5.

The radial coordinates of the poles in Figure 5.1 also encode information about

f in the frequency domain. The Fourier coefficient f̂k is well-approximated by

(r̂m)k = Rm(k), where Rm is as in (5.2). The terms in Rm with |zj| ≤ ϵ̃ ≪ 1 have

negligible influence when k is small, so they capture aspects of the signal that

are only observable at low frequencies.

5.2.2 Barycentric trigonometric rational functions

Large numerical errors can be incurred when evaluating trigonometric rationals

that are numerically constructed using (5.1) directly [51, 163]. Another natu-

ral way to represent rm is in a pole-residue format with respect to the pairs of

poles (zj = e2πiηj , 1/zj) of the rational function r̃m in (5.3). Evaluation using this

format is often reliable in practice, but it can potentially result in catastrophic

cancellation if the evaluation point is too near to the poles. In the aperiodic

setting, the AAA algorithm [119] safeguards against such instabilities by using

barycentric rational interpolants with backward-stable evaluation on the inter-

val of approximation [8, 87].

The trigonometric analogue of the barycentric rational interpolants is de-

scribed in [86], and more recently, in [9, 95]. For type (m − 1,m) rationals on

[0, 1), they take the following form:

rγ,tm (x) =
nm−1(x)

dm(x)
=

∑2m
j=1 γjfj cot

(
π(x− tj)

)∑2m
j=1 γj cot

(
π(x− tj)

) , 2m∑
j=1

γjfj = 0, (5.4)

where the interpolating points t = {t1, . . . , t2m}, which are always assumed to

be distinct, are called barycentric nodes, γ = {γ1, . . . , γ2m} are called barycentric

weights, and fj = f(tj). It is easily shown that rγ,tm (tj) = fj for any choice γ
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with all nonzero entries [26], but it is not obvious from (5.4) that rγ,tm is in fact a

type (m − 1,m) trigonometric rational. This can be seen by using the trigono-

metric polynomial ℓt(x) =
∏2m

j=1 sin(π(x− tj)), and rewriting rγ,tm as ℓtnm−1/ℓtdm

(see [86]). The condition
∑2m

j=1 γjfj = 0 enforces that the numerator is a trigono-

metric polynomial of degree m−1, rather than m. It is not clear from (5.4) where

the poles of rγ,tm lie, and in particular, whether they lie off [0, 1) (see Section 5.2.3).

Stability properties (and other advantages) of the barycentric form were popu-

larized in the context of polynomial interpolation [25], where the weights γ are

always chosen so that dm(x) = 1. Thorough analysis can be found in [8, 87],

with additional relevant discussions for the rational case in [51, 119].

5.2.3 Approximations in time

In the noiseless setting, the trigonometric barycentric rational rγ,tm can be di-

rectly constructed from samples of f using an analogue of the AAA algorithm

(pronyAAA) that we introduce here.2 This supplies a fast, automated way to

construct near-optimal trigonometric rational representations of signals. Other

highly effective rational approximation algorithms include the RKFIT algorithm

[23] and vector fitting [74], though these have not been explicitly adapted to the

periodic setting. These methods are not suited to our needs as they require and

can be sensitive to a set of initialization parameters (e.g., guesses of the number

and location of the poles).

A major advantage of AAA-type methods over other approximation

2Independently, AAA for type (m,m) trigonometric rationals has been developed with ap-
plications related to conformal mapping [9]. A closely related idea where rational approxi-
mation is used in Fourier space (and so aperiodic rationals are used) and related to exponential
sums in value space was developed in [44] concurrently with and independently from our work.
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Figure 5.2: Left: 3000 samples from a function f are taken on an equally spaced
grid from [0, 1). However, the data inside the grey regions are corrupted and
thus deleted from the sample (a total of 609 observations are missing). The avail-
able data are plotted (blue, upper panel) and used to construct a type (33, 34)
trigonometric barycentric rational interpolant r34 via pronyAAA. The resulting
approximant, evaluated on an equally spaced grid and plotted (black, lower
panel), imputes the missing data in the grey regions. Right: The absolute er-
ror |f(x) − r34(x)| is plotted in black on a logarithmic scale against the original
grid of sampled points. For comparison, the absolute error when pronyAAA is
applied to an uncorrupted sample of f with no missing data is also displayed
(red).

schemes is that they can be blithely applied to samples from non-uniform grids,

and can even be used for recovering functions defined on disjoint sets of sup-

port [119]. In particular, these methods are robust to missing samples. In Fig-

ure 5.2, we use pronyAAA to recover a function from data that has been deleted

in several corrupted regions.

Constructing barycentric trigonometric interpolants

Our construction algorithm is a straightforward extension of the standard AAA

algorithm, with differences being the use of trigonometric basis functions, the

restriction that the numerator is always of degreem−1, and the requirement that

the constructed interpolant has an even number of interpolating points.3 These
3This is so that rγ,tm has an even number of simple poles that occur in approximate conjugate

pairs.
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restrictions are so that the constructed approximant corresponds to a length

m exponential sum in Fourier space. As with standard AAA, pronyAAA em-

ploys a greedy residual minimization method to adaptively select interpolating

points. In this way, it builds up a trigonometric rational interpolant one pair of

support points at a time, updating the weights γ at each step by solving a least

squares problem. We briefly discuss the process here, and refer to [119] for more

details.

Let {f0, . . . , f2N} be the samples of a function f we seek to approximate,

where T = {xj}2Nj=0 ⊂ [0, 1) are the sample locations and f(xj) = fj . We first

describe how the barycentric weights are updated at each iteration. Suppose

that at the mth iteration, the barycentric support points for rγ,tm (x) in (5.4) are

t = {t1, . . . , t2m} ⊂ T . Let T̃ = T \ {t1, . . . , t2m}. We must now choose {γj}2mj=1.

Defining the vector γ = (γ1, . . . , γ2m)
T and recalling that nm−1 and dm are such

that rγ,tm = nm−1/dm as in (5.4), we select the weight vector γ as the solution to

the following constrained optimization problem:

min
γ∈C

∑
xj∈T̃

(
f(xj)dm(xj)− nm−1(xj)

)2
, s.t.

2m∑
j=1

f(tj)γj = 0, ∥γ∥2 = 1. (5.5)

The constraint is satisfied if we select a vector of the form γ = Qγ̃, ∥γ̃∥2 = 1,

where Q is a 2m× (2m−1) matrix with orthonormal columns that span the null

space of the vector (f(t1), . . . , f(t2m)). Since for each xj ∈ T̃ ,

f(xj)dm(xj)− nm−1(xj) =
2m∑
ℓ=1

(
f(xj)− f(tℓ)

)
γℓ cot(πxj − πtℓ), (5.6)

we see that γ̃ is given by the last right singular vector of the matrix CQ, where

C ∈ R|T̃ |×2m has entries Cjℓ = (f(xj)− f(tℓ)) cot(πxj − πtℓ), where each xj is a

unique member of T̃ .

Once γ is computed, we have constructed rγ,tm and the iteration is complete.
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If the error maxxj∈T̃
|f(xj)− rγ,tk (xj)| is not sufficiently small, we begin the next

iteration by choosing two additional interpolating points from T̃ . It is not clear

how to efficiently choose two points in a single step, so we introduce an interim

step. The first point is chosen as t2m+1 = argmaxxj∈T̃
|f(xj)− rγ,t2m(xj)|, and then

t and T̃ are updated appropriately. To pick the second point, we construct an

interim trigonometric interpolant rγ,tm+1/2 with an odd number of interpolating

points, using the basis functions csc(π(x− tj)) instead of cot(π(x− tj)). The dif-

ferent basis functions ensure that rγ,tk+1/2 is a trigonometric rational: see [86]. The

weights in rγ,tm+1/2 are updated by solving a problem similar to (5.5), though the

constraint differs due to the different basis functions [86]. The second interpo-

lating point is then chosen as t2m+2 = argmaxxj∈T̃
|f(xj)− rγ,tm+1/2(xj)|.

Spurious poles

As with AAA, nothing in the pronyAAA algorithm directly controls where the

poles of rγ,tm occur. The advantage of this approach is that unlike fixed–pole

approximation methods, the pole locations are adaptively determined, and au-

tomatically cluster in patterns that are highly effective for resolving singulari-

ties [166]. One drawback to this approach is that the conjugate-pair symmetry

of the poles is not explicitly enforced. A more problematic issue is that so-called

“spurious poles” may appear on the interval of approximation.

Spurious poles are poles that are undesirable or unnecessary [26, 119].

They can arise as artifacts related to numerical error, but they can also ap-

pear within perfectly mathematically valid solutions to an interpolation prob-

lem constrained by (5.5). For example, a spurious pole may co-occur with a

nearby zero that effectively cancels out its influence except within a small in-
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Algorithm 2 The pronyAAA algorithm.

Input: tolerance parameter ϵ, sample locations T = {x0, . . . , x2N}, samples
{f(x0), . . . , f(x2N)}.
Output: barycentric support points t and weights γ defining rγ,tm in (5.4).

1. Setm = 1, t = {t1 = argmaxxj∈T |f(xj)|, t2 = argmaxxj∈T\t1|f(xj)|}, T̃ = T \t.

2. Solve for γ as in (5.6) to define rγ,t1 . Set err = maxxj∈T̃
|f(xj)− r1(xj)|.

3. While err > ϵ
for ℓ = 1, 2

(i) Set t2m+ℓ = argmaxxj∈T̃ |f(xj)− r
γ,t
m+(ℓ−1)/2|.

(ii) t← {t1, . . . , t2m+ℓ}, T̃ ← T̃ \ t2m+ℓ.
(iii) Update γ = (γ1, . . . , γ2m+ℓ)

T by solving a constrained
optimization problem on T̃ (see (5.6) and discussion).

end for
err ← maxxj∈T̃

|f(xj)− rγ,tm+1(xj)|.
m← m+ 1.

end while

4. Compute poles and residues (see Section 5.5.7).
5. If there are spurious poles, apply cleanup routine (see Section 5.2.3).

terval I , where I ⊂ [xj, xj+1] for some neighboring sample locations xj < xj+1,

so that for x /∈ I it holds that |rγ,tm (x) − f(x)| < ϵ. This configuration is a per-

fectly acceptable way to solve (5.5), but it leads to a solution where ∥rγ,tm − f∥∞

is unbounded.

Spurious poles are eliminated in the standard AAA algorithm with an added

cleanup routine [119], which we adapt to our setting. Pairs of spurious poles are

detected via their small residues. The barycentric nodes nearest to the spurious

poles are eliminated. This forces the degree of the interpolant to drop and re-

quires the barycentric weights to be recomputed, which changes the number

and location of the poles. When poles cannot be eliminated without destroy-

ing the approximation, it is often because the function being interpolated is not

well-approximated by low to moderate degree type (m−1,m) trigonometric ra-
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tionals. We observe this, for example, when pronyAAA is applied to samples

perturbed by additive Gaussian noise. An example is described in Section 5.4.2

that involves the reconstruction of ECG data from 645 samples. The direct appli-

cation of pronyAAA to the noisy data results in a type (199, 200) trigonometric

rational interpolant, with 62 spurious poles appearing on the interval of ap-

proximation. However, by combining pronyAAA with the construction method

we describe in the next section, we are able to instead construct a type (69, 70)

trigonometric barycentric rational representation of the signal with no spurious

poles (see Figure 5.6).

5.2.4 Approximations in Fourier space

The pronyAAA algorithm allows us to directly construct trigonometric rational

representations to signals, but the exclusive use of pronyAAA is inadequate.

For example, it cannot be applied in the presence of Gaussian noise, and the

barycentric form is not conducive to efficient recompression techniques. These

issues can be remedied by instead representing f in Fourier space using the

exponential sums in (5.2).

To construct the sums, we require the Fourier coefficients of f . We use the

fast Fourier transform (FFT) to compute the coefficients v = (f̂0, . . . , f̂N)
T as-

sociated with samples {f(xj)}2Nj=0, where xj = j/(2N + 1). When f is not a

bandlimited function (or has a bandlimit > N ), this process introduces error

into the Fourier coefficients and motivates the use of the following notion:

Definition 3 (ϵ-resolution). For 0 < ϵ < 1, the ϵ-resolution of f is the smallest non-
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negative integer Nϵ such that

∥f − ftrunc∥∞ ≤ ϵ,

where ftrunc is the best L∞[0,1) projection of f onto the functions of bandlimit Nϵ.

For bandlimited functions,N0 is the bandlimit of f . The ϵ-resolution for non-

bandlimited functions can be understood in relation to the smoothness of f and

its region of analyticity in the complex plane [163]. In our setting, the assump-

tion is that f contains algebraic singularities and Nϵ is large. However, when

f is well-approximated by a type (m−1,m) trigonometric rational, Lemma 7

indicates that F(f) can be represented with far fewer degrees of freedom via

the exponential sum Rm. One way to find Rm is by fitting the nonlinear model

Rm(k) =
∑m

j=1 ωje
αjk to the Fourier coefficients f̂k, 0 ≤ k ≤ N . We emphasize

that in the general setting, m is unknown and must be determined adaptively.

Regularized Prony’s method

To construct Rm, we follow an idea in [28] and use the regularized version of

Prony’s method (RPM) from [27]. Variants of this method go by many names

across various disciplines, and we refer to [135] for an overview. The problem

of finding Rm can be recast as a structured low rank approximation problem

involving Hankel matrices. This connection can be understood via the following

lemma, a version of which was first proven by Prony in 1795 [136].

Lemma 8. Let N be an even integer.4 Let Rm be as in Lemma 7 and let HRm
be

an (N/2 + 1) × (N/2 + 1) Hankel matrix with entries (HRm
)kℓ = Rm(k + ℓ),

0 ≤ k, ℓ ≤ N/2, where N ≥ 2m. Let Pm(z) =
∑m

j=0 cjz
j be a polynomial with roots

4The statement and proof can be adjusted to account for odd N [27].
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zj = eαj , 1 ≤ j ≤ m. Then, rank(HRm
) = m, and the kernel of HRm

is spanned

by {c, Sc, . . . , SN/2−mc}, where c = (c0, . . . , cm, 0, . . . , 0)
T and S is the forward shift

matrix.

Proof. See [Lem. 2.1][134].

In our case, we seek Rm ≈ F−1(f). Lemma 8 indicates that this is equiv-

alent to finding a Hankel matrix HRm
of rank m so that HRm

≈ Hv, where

(Hv)jk = f̂j+k, 0 ≤ j, k ≤ N/2. Moreover, it shows that the complex exponen-

tials in (5.2) are the roots of a special polynomial, often referred to as Prony’s

polynomial [135], whose coefficients form a vector in the null space ofHRm
. The

regularized Prony’s method (RPM), described in pseudocode in Algorithm 3,

finds a vector c of polynomial coefficients in the numerical null space of Hv, i.e.,

c such that ∥Hvc∥2 ≤ ϵ. Note that unlike in Lemma 8, Hv is not exactly of rank

m, so the polynomial P(z) with monomial coefficients given by the entries of c

generally has N/2 roots. Moreover, it is not the case that all the roots of P(z)

always lie inside the unit disk. Since we only want decaying exponentials in

Rm, we keep only the m roots with modulus < 1. The exponents {αj}mj=1 for Rm

are determined from these roots. Then, a least squares fit to the Fourier coef-

ficients of f supplies the weights {ωj}mj=1. Pseudocode for the RPM is given in

Algorithm 3.

Thorough details on the RPM, including a qualitative error bound in terms

of the singular values of Hv, can be found in [27]. In some settings, such as in

the example in Figure 5.3, a good choice for the tolerance parameter ϵ may be

unclear. In this case, we modify Algorithm 3 so that ϵ is chosen automatically

by detecting gaps in the small singular values of Hv that indicate the presence
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Algorithm 3 The regularized Prony method.

Input: tolerance parameter ϵ and Fourier coefficients v = (f̂0, . . . , f̂N)
T .

Output: {(ωj, αj)}mj=1 defining Rm in (5.2), so that |Rm(j)− f̂j| ≈ ϵ.

1. Construct the Hankel matrix Hv, where (Hv)j+k = f̂j+k for 0 ≤ j, k,≤ N/2.
2. Compute the SVD of Hv to find c, where ∥Hvc∥2 ≤ ϵ, ∥c∥2 = 1.
3. Set P(z) =

∑N/2
ℓ=0 cℓz

ℓ.
4. Find the m ≤ N/2 roots {zj}mj=1 of P(z) with |zj| < 1. Set αj = log zj .
5. Compute the least squares solution to the system V ω = v, where Vjk = zjk+1,
0 ≤ j ≤ N, 0 ≤ k ≤ m− 1.

of a numerical null space. Algorithm 3 naively implemented has an O(N3) cost

because it requires finding the singular value decomposition (SVD) of Hv. This

is improved if one finds the SVD with an algorithm that takes advantage of

fast matrix-vector products for Hankel matrices (e.g., the randomized SVD [79],

Lanczos-based methods [65], etc.).

The regularized Prony method as a filter

In practice, one expects that samples of f are corrupted by noise. The RPM has

a natural interpretation as a type of filter. Rather than, for example, filtering out

the high frequency components of a signal, it separates a signal into the sum

of two parts by splitting the Hankel matrix Hv into the sum Hv = HRm
+ HN .

The first term encodes a sequence of coefficients that are well–approximated

in Fourier space by a length m sum of exponentials (and thus correspond to

a trigonometric rational). The second term encodes a sequence of coefficients

that are not well approximated by such an expression. This is referred to as

an annihilating filter in the literature on signals with so-called finite rates of

innovation [170]. The example in Figure 5.3 displays noisy data collected by

a hydrophone. The noise is not well represented by low to moderate degree
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Figure 5.3: Left: A noisy recording of the trill portion of a Pacific blue whale’s
song. The sample consists of 6001 equally spaced observations recorded over
1.5 seconds [114]. Right: A type (274, 275) trigonometric rational approximation
to the signal. The approximant is constructed by applying Algorithm 3 directly
to the data with the tolerance parameter ϵ = 2×10−4. The RPM filters out highly
oscillatory noise that is not well-captured by trigonometric rationals, making it
easier to identify the time-localized pulses in the trill. Once the approximant is
constructed, one can toggle between a barycentric representation and the RPM-
constructed representation as a sum of complex exponentials. Various postpro-
cessing tasks can also be performed (see Table 5.2).

trigonometric rationals, so it is filtered out by this structured low rank approxi-

mation process.

5.3 Fourier and inverse Fourier transforms

The RPM and pronyAAA automatically construct compressed representations

of f , but these representations are very different from one another. In this sec-

tion, we describe Fourier/inverse Fourier transforms that allow us to move be-

tween these representations. If Rm is a length m sum of exponentials, the ex-

istence of a trigonometric rational rm = F−1(Rm) is guaranteed by Lemma 7.

However, the lemma does not reveal if or how rm can be expressed in barycen-

tric form. In the same way, given a trigonometric barycentric interpolant rγ,tm , it

is not clear from (5.4) how one can recover the sum of exponentialsRm = F(rγ,tm ).

The exact recovery of one representation from the other is an ill-conditioned

problem. With this in mind, we develop lossy but stable transform routines. In
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our software package REfit [40], these transforms are accessed with the com-

mands ft and ift.

5.3.1 The forward transform

Given a barycentric rational rγ,tm as in (5.4), we seek

Rm(k) = F(rγ,tm )(k) =
m∑
j=1

ωje
αjk.

The parameters of interest can be expressed explicitly in terms of the poles and

residues of rγ,tm . For each j, αj = 2πiηj and ωj = e−ηjRes(rγ,tm (z), eηj), where

z = e2πix and {ηj}mj=1 are those poles of rγ,tm with Im(ηk) > 0 [28]. However, using

these formulas requires the accurate computation of the poles ηj , 1 ≤ j ≤ m, and

their residues. In general, this is an ill-conditioned problem involving extrapo-

lation off the interval of approximation. Trigonometric rationals with different

pole-residue forms can behave almost indistinguishably on [0, 1). Known sta-

bility results depend on the poles of rγ,tm being sufficiently well-separated from

one another and the residues Res(rγ,tm (z), eηj) being bounded well away from

zero [Sec. 2][115]. However, in our setting, we assume that rγ,tm is an approxi-

mation to a function f that has algebraic singularities. Good resolution of these

features is possible precisely because rγ,tm has poles that cluster up near the sin-

gularities (see Figure 5.1). For this reason, we do not expect that the pole loca-

tions or the exact values of their residues can be computed with high accuracy.

Similarly, the exact recovery of the parameters of Rm from its samples is known

to be an ill-conditioned problem [135, 162].5

5In a related discussion, it is shown in [117] that in the case where {α1, . . . αm} are purely
imaginary, the problem only becomes well-conditioned when the exponents {α1, . . . αm} are
sufficiently well-separated from one another.
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Instead of trying to recover Rm exactly, we apply a regularization that finds

R̃m̃ ≈ Rm, where m̃ ≤ m.6 The poles of rγ,tm can be approximately computed by

solving a (2m+1)× (2m+1) generalized eigenvalue problem (see Section 5.5.7).

Suppose {η̃k}mk=1 are the computed poles with Im(η̃k) > 0. We set α̃k = 2πiη̃k.

Then, instead of computing {ω1, . . . , ωm} using the explicit formula, we find a

vector of weights ω̃ = (ω̃1, . . . , ω̃m)
T by solving the overdetermined linear sys-

tem Vα̃ω̃ = r̂, where r̂ = [(r̂γ,tm )0 · · · (r̂γ,tm )M−1]
T is a vector of Fourier coefficients

of rγ,tm , and (Vα̃)j,k = eα̃k(j−1), 1 ≤ j ≤ M, 1 ≤ k ≤ m. Note that all of the Fourier

coefficients of r̃m̃ = F(R̃m̃) are exactly produced by a length m̃ sum of exponen-

tials with exponents α̃j = 2πiη̃k. In infinite precision, we would only need m̃

Fourier coefficients of r̃m̃ to solve for the weights ω̃ (see Lemma 8). Instead, we

must fit to the coefficients of the nearby rational rγ,tm , and so apply a modest level

of oversampling. We then test the accuracy of R̃m̃ against a randomized sample

of the Fourier coefficients of rγ,tm , and systematically increase M as needed. It is

typically sufficient to choose M = 2m.

Since finding {eα̃j}mj=1 and solving Vα̃ω̃ = r̂ are each O(m3) operations, the

cost for computing R̃m̃ is dominated by procuring an accurate sample r̂. This is

done first by evaluating 2Nϵ + 1 samples of rγ,tm , where Nϵ is the ϵ-resolution of

rγ,tm , on an equally spaced grid, and then applying an FFT. By default, ϵ is taken

to be near machine precision, and Nϵ can be approximately found automatically

using, for example, an adaptation of Chebfun’s chop algorithm [7]. In total,

computing R̃m from rγ,tm requires O(Nϵ logNϵ +Nϵm+m3) operations.

6If one allows for some of the weights in Rm to be zero, then one can construct sums of
exponentials where it is always true that m̃ = m.
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5.3.2 The inverse transform

We now assume Rm(k) =
∑m

j=1 ωje
αjk is given, where each αj is distinct,

Re(αj) < 0, and ωj ̸= 0. We seek an efficient representation for rm = F−1(Rm),

which is defined to be

rm(x) =
−1∑

k=−∞

Rm(−k)e2πixk +
∞∑
k=0

Rm(k)e
2πixk.

It is not always true that rm is a type (m−1,m) trignometric rational function.

However, this result does hold under the additional assumption thatRm(0) = 0,

or, equivalently,
∫ 1

0
rm(x)d(x) = 0. We take this to be the case, and our objec-

tive is to construct a barycentric interpolant rγ,tm to rm. We show in the next

lemma that for any set of distinct points t = {t1, . . . , t2m} ⊂ [0, 1), there is γ

such that rγ,tm = rm. However, except in special cases, it is numerically unstable

to compute γ directly. The stable computation of γ and subsequently, the error

∥rm − rγ,tm ∥∞, depends strongly on the choice of t.

Lemma 9. Let rm be a type (m−1,m) trigonometric rational function with simple

poles that is real-valued, continuous, and periodic on [0, 1). Let t ⊂ [0, 1) be a set

of 2m distinct interpolating points. Then, there is a set of weights γ such that the

trigonometric barycentric interpolant rγ,tm recovers rm exactly.

Proof. Consider the denominator qm in rm = pm−1/qm, and assume that qm has

no shared zeros with pm−1. Since qm is a trigonometric polynomial, we can write

it in barycentric form with respect to the interpolating points in t:

qm(x) = ℓt(x)
2m∑
j=1

wjqm(tj) cot(π(x− tj)), ℓt(x) =
2m∏
j=1

sin(π(x− tj)), (5.7)

wherewj = 1/
∏2m

k=1,j ̸=k sin(π(tk − tj)) are the polynomial barycentric weights [25]

associated with t. By setting γj = qm(tj)wj and fj = rm(tj), we have via (5.4)

123



that there is rγ,tm (x) = n(x)ℓt(x)/qm(x) for some function n, where for each j,

rγ,tm (tj) = rm(tj). We must now show that n(x)ℓt(x) = pm−1(x).

The barycentric trigonometric polynomial interpolant to pm−1 on t exists and

is given by pm−1(x) = ℓt(x)
∑2m

j=1wjpm−1(tj) cot(π(x − tj)). Expanding this in

exponential form, we have that pm−1(x) = cme
2πimx + . . .+ c−me

−2πimx, where

cm =
1

4i
exp

(
−πi

2m∑
j=1

tj

)
2m∑
j=1

wjpm−1(tj), c−m = −exp

(
2πi

2m∑
j=1

tj

)
cm.

Since pm−1 is of degreem−1, cm = c−m = 0, so
∑2m

j=1wjpm−1(tj) = 0. This implies

that
∑2m

j=1 γjrm(tj) = 0, as rm(tj) = pm−1(tj)/qm(tj). Now it is clear that n(x)ℓt(x)

is also a trigonometric polynomial of degree m−1. Since nℓt interpolates pm−1 at

2m points, they must agree everywhere.

The computation of γ as in Lemma 9 via polynomial barycentric weights and

the evaluation of qm is numerically unstable except in very special cases [163].

Constructing a stable interpolant requires a rather careful selection of barycen-

tric nodes. As we describe in the next section, some of the more obvious meth-

ods for selecting the nodes perform poorly and lead to instabilities in the form

of spurious poles. The following discussion is somewhat technical, but it intro-

duces an effective heuristic for choosing a “good” set of barycentric nodes and

then stably constructing rγ,tm ≈ rm.

A modified pronyAAA for rational recovery

A simple strategy for choosing nodes is to evaluate rm on a fine enough grid,

and then apply m steps of pronyAAA to construct the interpolant rγ,tm . This

method does not usually exactly recover rm (see the discussion of exact recov-
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ery in Section 5.3.1), and it can be the case that the error ∥rγ,tm − rm∥∞ is unac-

ceptably large. A few additional steps of pronyAAA may drive the error down,

though this results in a trigonometric rational interpolant with more poles than

rm. However, a more pernicious problem with this approach is that demand-

ing accuracy close to machine precision from AAA-based methods can result

in spurious poles on the interval of approximation that cannot be eliminated

without adversely impacting accuracy [119].

To avoid introducing spurious poles, we make use of the poles of rm, which

are known explicitly fromRm via Lemma 7. There is no hope of exactly preserv-

ing the poles. However, if m is fixed and rγ,tm is constructed such that it approx-

imately preserves the given poles, then it cannot also admit arbitrary spurious

poles. This motivates a three-step procedure for constructing rγ,tm that mixes a

pole-preservation strategy involving a type (m+K −1,m+K) trigonometric

rational with a data-driven strategy from pronyAAA:

(1) A candidate set t̃ of 2m+ 2K barycentric nodes is chosen, where K ≥ 0 is

an oversampling parameter. Subsets of t̃ admit type (m−1,m) barycentric

trigonometric interpolants with poles close to those of rm.

(2) The interpolant rγ̃,t̃m+2K is constructed via a pole-preserving linearized least-

squares fit to samples of rm, so that it has 2m poles close to the poles of rm.

(3) The pronyAAA cleanup procedure (see Section 5.2.3) is applied to remove

the 2K poles of rγ̃,t̃m+2K with the smallest residues. This selects t, a set of 2m

barycentric nodes, from t̃. The barycentric weights {γ1, . . . , γ2m} are then

computed via (5.5). Note that the poles of rγ,tm must also be recomputed.

A version of this method without oversampling (i.e., with K = 0, t̃ = t, and
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γ̃ = γ) is useful for motivating how the barycentric nodes in Step (1) are se-

lected. In such a setting, Step (2) simplifies substantially and Step (3) is not

needed. However, it is more stable to choose K > 0 and this is usually required

in practice. We first describe the K = 0 case, and then use it to explain the

method for K > 0.

Case 1: K = 0. Suppose that T , the discretization of [0, 1) from which t

is chosen, consists of points x0 < x1 < . . . < x2N . Let P = {η1, . . . , η2m}

be the poles of rm. Ideally, rγ,tm can be constructed so that its poles are

given by P . Noting that the poles of rγ,tm are the zeros of the denomina-

tor polynomial dm(x) =
∑2m

j=1 cot(π(x− tj)) in (5.4), we introduce the matrix

DT ∈ C(2m+1)×(2N+1):

DT =



ℓ1,0 · · · · · · ℓ1,2N
...

...

ℓ2m,0 · · · · · · ℓ2m,2N

rm(x0) · · · · · · rm(x2N)


, ℓj,k = cot(π(ηj − xk)). (5.8)

Using DT , we relate the selection of barycentric nodes to a column subset

selection problem. Indexing from 0, denote by (DT )k the kth column of

DT . The kth column is associated with the point xk in T . The set of nodes

t = {xk1 , xk2 , . . . xk2m} then corresponds to a collection of columns that form the

submatrixDt =
[
(DT )k1 , . . . , (DT )k2m

]
. From Lemma 9, there is γ = (γ1, . . . , γ2m)

T

such that rγ,tm = rm. We note that γ is in the null space of Dt: the first 2m entries

of Dtγ are evaluations of dm at its zeros. The last entry of Dtγ is also zero, since

numerator of rγ,tm is of degree m−1 (see Section 5.2.2). If γ can be computed

from Dt accurately, then clearly t is an excellent set of interpolating points for

constructing an interpolant to rm. However, the accuracy of this computation

depends on properties of Dt. In particular, there are stable ways to compute γ if
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2m−1 of the columns of Dt form a well-conditioned matrix [72, 156].

This suggests that we choose the points t by choosing a subset of columns

from DT that are close to orthogonal. Several kinds of rank-revealing algo-

rithms can be applied to DT to approximately solve this problem, including the

column-pivoted QR (CPQR) algorithm. This constructs the factorizationDTP =

QTR, where P is a permutation matrix, and the leading ℓ ≤ rank(DT ) columns

of DTP have been greedily selected to minimize their linear dependence on

one another [65, Sec. 6.4]. As a consequence of Lemma 9, any submatrix of DT

consisting of 2m or more columns is rank-deficient, so rank(DT ) ≤ 2m−1.7 We

choose 2m−1 points in t by performing CPQR onDT . In principle, the final point

in the set t should be chosen so that the accuracy of the computed right singular

vector in the nullspace of Dt in (5.8) is maximized8. Instead, we simply choose

the point associated with the column in the trailing (|T |−2m+1) columns ofDTP

that has the smallest 2-norm. Though they are selected quite differently, these

CPQR-selected barycentric nodes concentrate around singularities, just like the

nodes selected by pronyAAA (see Section 5.3.2 and Figure 5.4).

If vectors in the null space of Dt can be accurately computed, then γ can be

taken as the last right singular vector ofDt. However, this is rarely the case. The

accurate recovery of γ from Dt can be problematic even with the best possible

choice t ⊂ [0, 1). For this reason, we require a strategy that additionally incor-

porates a fit to samples. The simplest idea is to use the 2m points as selected

above, and then find the barycentric weights via (5.5). However, this strategy

does not seem to eliminate spurious poles or reduce error as effectively as the

procedure we describe below.
7If we assume that rm has a denominator of exactly degree m, then rank(DT ) = 2m−1.
8As a proxy, one could maximize the gap between the last two singular values of Dt [156,

Ch. 4]
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Case 2: K ̸= 0. In practice, we take K = 1, though one can also choose

a larger K. Construct an oversized candidate set t̃ = {xk1 , . . . , xk2m+2K
} using

the CPQR-based method from Case 1. The matrix Dt̃ is then of dimensions

(2m+ 1)× (2m+ 2K) and has a numerically detectable null space. We compute

the barycentric weights of the interpolant rt̃,γ̃2m+2K by requiring that γ̃ = Q̃η,

where the columns of Q̃ are orthogonal and approximately span the null space

of Dt̃. We select η to minimize the value ∥CQ̃η∥2, with C constructed as in

(5.6). Approximate poles and residues of rt̃,γ̃2m+2K can then be computed inO(m3)

operations (see Section 5.5.7). It is almost always the case in practice that 2K

poles of rt̃,γ̃2m+2K are negligible in that they have residues with tiny magnitudes.

With this in mind, we sort the poles by the magnitude of their residues. As

in the pronyAAA cleanup routine, for each of the 2K poles with the smallest

residues, we eliminate the point in t̃ that is nearest to the pole. The remaining

points in t̃ are taken as t, and the set of barycentric weights are found as in a

standard step of pronyAAA, i.e., as the minimizer of (5.5).

This strategy first selects a set of interpolating points for which an inter-

polant with good properties (e.g, poles off [0, 1)) is known to exist, and then fits

the interpolant to samples of rm. We remark that this is a heuristic: there is no

guarantee in this algorithm that spurious poles are avoided, nor is there a guar-

antee on the accuracy to which the original poles of rm are preserved. It remains

unclear why the solution in Step (3) often seems to inherit the good pole prop-

erties associated with the initial solution in Step (2), and under what circum-

stances this inheritance can be assured. Nonetheless, we find that the method

works extremely well in many cases where simply applying pronyAAA fails.

Implementational details. In practice, we start with K = 0. When γ can be
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Figure 5.4: Left: poles of rbary (blue) and rift (orange) are plotted in the com-
plex plane. Here, rbary is a type (18, 19) barycentric interpolant to f con-
structed via pronyAAA, and rift = F−1(R19) ≈ f , where R19 is an exponential
sum as in (5.2), and rift is then constructed by applying the inverse Fourier
transform algorithm from Section 5.3.2 to R19. The function f is given by
f(x) = | sin(π(x − 1/2))| − π/2, and has a singularity at x = 1/2. Right upper:
The locations of the barycentric nodes for rbary (blue) and rift (orange). Right
lower: The distances dj = |ηj − .5| from the singularity, where each ηj is a pole
with Im(ηj) > 0, are sorted by size and plotted on a logarithmic scale (shown in
blue for rbary, orange for rift).

recovered with high accuracy directly from Dt , we recover it and end the pro-

cedure. This can be checked by computing the singular values of Dt or by using

estimates related to the CPQR routine [72]. When this isn’t possible, we set

K = 1 and enlarge our selection of candidate barycentric nodes, which requires

no additional computation. Then, we move on to Steps (2) and (3). If the method

fails and spurious poles are detected, we first try enlarging t̃ by setting K = 2

and trying again. If this fails, it can often be remedied by resampling rm on a

denser grid and starting over at Step (1). When resampling does not solve the

issue, we instead construct a stable barycentric interpolant using pronyAAA by

accepting a lower level of accuracy.
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Example: Two types of barycentric interpolants

In Figure 5.4, we compare the properties of two types of rational approximations

to f(x) = | sin(π(x−1/2))|−π/2. First, we apply pronyAAA to a set of 6000 sam-

ples of f taken on an equally-spaced grid T . This constructs rbary, a type (37, 38)

trigonometric rational, where away from the singularity, |f(x)−rbary(x)| ≈ 10−8.

The locations of the barycentric nodes selected by pronyAAA are plotted (blue)

in the upper right panel of Figure 5.4. In the left panel, a subset of the poles

of rbary are plotted (blue) in the complex plane. Both the nodes and the poles

cluster up near the singularity x = 1/2. Shown in red in the same plots are

the CPQR-selected barycentric nodes from Section 5.3.2, and the poles of the

barycentric trigonometric rational rift = F−1(Rm), where m = 19. Here, Rm is

an exponential sum constructed via the RPM using samples of f on T , and rift

is constructed using the procedure in Section 5.3.2. The nodes and poles of rift

also cluster near x = 1/2, but in spatial patterns that are quite different from

those of rbary. A closer investigation of the pole clustering patterns (Figure 5.4,

lower right) reveals that in both cases, the sets of distances d1 ≤ d2 ≤ . . . ≤ d19

from the singularity, where dj = |ηj − 1/2| and each ηj is a pole with Im(ηj) > 0,

have the tapered-type spacing on a logarithmic scale that is associated with best

(and near-best) convergence rates [166].

5.4 Signal reconstruction in time and frequency space

With the Fourier and inverse Fourier transforms available, we can combine the

advantages of pronyAAA and the RPM to overcome various issues, such as un-

dersampling or noise. In this section, we illustrate this idea with two examples.
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Figure 5.5: Left: The absolute error in approximating f(x) = | sin(2πx)/4 +
exp(sin(2πx))|/4 + c with two different rational approximants, F(Rb) (blue) and
F(Rr) (red), is plotted on a logarithmic scale at 3000 equally-spaced points: Rb

is an exponential sum of length 14 that was adaptively constructed via the RPM
(Algorithm 3) from a sample consisting of only 1401 equally-spaced points. The
tolerance parameter is set to ϵ = 10−10, but the coarseness of the sample limits
the achievable accuracy of the representation. Rr (red) is constructed by first
applying pronyAAA in signal space to construct a barycentric interpolant rγ,tr ,
and then using the Fourier transform function to compute Rr = F(rγ,tr ). Right:
The absolute errors in Fourier space between accurately computed Fourier co-
efficients of f and the exponential sums Rb (blue) and Rr (red) are plotted on a
logarithmic scale against the modes 0, 1, . . . 2500.

Then in Section 5.5, we describe a collection of algorithms for computing with

trigonometric rational functions and exponential sums that exploits our ability

to move stably between the representations.

5.4.1 An undersampled function

In this example, we consider a function f(x) = | sin(2πx)/4+exp(sin(2πx))|/4+c,

which has Fourier coefficients that decay asymptotically like O(|k|−2), where k

denotes the kth Fourier mode. Here, c is a normalization parameter ensuring

that the mean value of f over [0, 1) is zero. We suppose that f is sampled at 1401

equally spaced points, and that an exponential sum representing F(f) is desir-

able for downstream tasks. The direct application of Prony’s method performs
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poorly because f is undersampled. We denote the constructed exponential sum

as Rb. The error in the computation of the Fourier coefficients via the FFT is on

the order of 10−6, so we cannot expect accuracy much better than that. However,

an alternative approach is to apply pronyAAA to construct the barycentric in-

terpolant rγ,tr , and then apply the Fourier transform function from Section 5.3.1

to compute Rr = F(rγ,tr ).

In Figure 5.5 (left), we use the pole-residue format to directly evaluate the

values of the rationals associated with the two types of constructed exponential

sums. There is a tiny band around the two singularities in time space where the

errors incurred by the two methods are approximately the same. Elsewhere, the

accuracy achieved by first applying pronyAAA is nearly double that attained

by Prony’s method alone. The error in recovering the Fourier coefficients of f

is diffuse but also more accurate, especially in the extrapolation of the tail (Fig-

ure 5.5, right). The exponential sum Rr, with only 13 terms, is a representation

of f with highly localized error behavior, and it is in a form efficient for storage,

convolution, and other tasks (see Section 5.5).

5.4.2 Reconstruction of an ECG signal

Rational approximation methods are effective in many biomedical monitor-

ing tasks, including the processing of electrocardiogram (ECG) signals [55,

62]. In [55], rational functions constructed in the orthogonal rational

Malmquist–Takenaka basis are used to reconstruct ECG signals and then clas-

sify them. The rationals perform with better overall compression properties and

a number of other advantages when compared to wavelets, splines, and other
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families of functions [101]. We do not expect to outperform such a highly spe-

cialized scheme with our approach. However, we use this example to illustrate

that our more general-purpose method is extremely effective at constructing a

denoised representation of the signal directly from samples.

In this example, we apply the RPM and fit a rational function directly to

noisy ECG data taken from the PhysioNet MIT BIH arrhythmia database [118].

As in [55], the location of its poles can be used for classification and feature

recognition tasks. Using the inverse Fourier transform function described in

Section 5.3.2, we can construct a trigonometric barycentric trigonometric ratio-

nal representation of the function, which is a convenient format for identifying

local extrema (see Section 5.5). This can all be done with three lines of code in

REfit:
R = efun(data, ’tol’, 1e-3);

r = ift(R);

extrema = [ min(r); max(r)];

If one tries to use pronyAAA directly, the result is a trigonometric rational

with 200 poles, and the data set only contains 645 samples. Of these poles, 62

are spurious and lie on the interval of approximation. This happens because the

pronyAAA algorithm does not distinguish between the signal and the noise,

and it tries to induce a fit to noise by adding poles. A better approach is to first

apply the RPM. Within the first two lines of the above code, several tasks are

being executed: First, the exponential sum Rm (here, m = 35) stored in R is con-

structed via the RPM. The RPM automatically filters out additive noise on the

sample with magnitudes approximately at or below the tolerance level ϵ = 10−3.

Then, R is used to extrapolate high frequency information that lies beyond the

noise limitation (see Figure 5.6, left). This provides an enriched sample for se-

lecting interpolating points and constructing the barycentric interpolant r. The
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Figure 5.6: The superresolution of an ECG signal. Left: The magnitude of the
Fourier coefficients of the original signal (orange). The decay of the coefficients
stagnates due to noise in the signal, and this pollutes the higher frequencies.
Once an exponential sum representation Rm is constructed, we can extrapolate
to higher frequencies by evaluating Rm, and thereby super–resolve the signal
(blue). Right: A barycentric rational approximant (blue) in the time domain is
computed using the extrapolated Fourier data. It serves as a denoised version
of the original ECG signal (orange). The local extrema are identified (black dots)
using the differentiation and rootfinding algorithms from Section 5.5.

construction of r in this way can be viewed as a form of super-resolution [31].

If one tries to construct a barycentric interpolant without enriching the given

sample, spurious poles appear that cannot be eliminated without destroying the

accuracy of the approximation. This is because the signal is not well-resolved in

the time domain by the original sample. Once r is available, one can then auto-

matically and efficiently perform a variety of processing tasks, such as rootfind-

ing and the detection of maxima and minima.
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5.5 Algorithms for computing with rationals and exponential

sums

In this section, we give an overview of several of the algorithms used in our soft-

ware [40] to compute with trigonometric rational functions. Throughout, the

Fourier and inverse Fourier transform functions can be used to move between

representations as needed. For operations on trigonometric rational functions

that return trigonometric rationals, we recompress and represent the function

using exponential sums and/or barycentric forms whenever possible.

5.5.1 Compression for suboptimal sums of exponentials

Exponential sums are closed under addition and multiplication, but a sum Rm

resulting from the naive application of these and other operations is often sub-

optimal in the sense that a shorter sum R̃m̃ exists, where |Rm(j) − R̃m̃(j)| < ϵ

for 0 ≤ j. One of the major advantages of working with exponential sums is

that R̃m̃ can be constructed at a computational cost that usually depends on m,

rather than the ϵ-resolution parameter Nϵ associated with Rm.

Using AAK theory for finite rank Hankel operators, one can show (see [132,

Thm. 3.2]) that there is a length m̃ ≤ m approximation that satisfies the inequal-

ity

∥F−1(Rm)−F−1(R̃m̃)∥L2
≤ 2σm̃(ΓR),

where ΓR is the infinite matrix with entries (ΓR)j+k = Rm(j + k), j, k ≥ 0.

In [132], an O(m3) algorithm for recovering R̃m̃ directly from the parameters

of Rm is developed; a closely-related approach using only properties of finite-
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dimensional Hankel matrices is described in [27]. This method is successfully

employed in [82] within a scheme that uses rational approximations to solve

Burger’s equation. However, the implementation requires the judicious use of

high-precision arithmetic, which we wish to avoid.

Instead, we note that when a length m̃ < m recurrence is approximately

satisfied by the sequence {Rm(0), Rm(1), . . .}, this fact is often captured sur-

prisingly well with a Pisarenko-like method [56, 131] closely related to Prony’s

method that involves only a small sample of M > 2m observations of Rm.

Specifically, we construct a small (M/2 + 1)× (m+ 1) rectangular Hankel ma-

trix H with entries Hjk = Rm(j+ k). Then, we apply the RPM from Algorithm 3

on H to construct R̃m̃. We check the error |Rm(j) − R̃m̃(j)| on a random sam-

ple of integers 0 ≤ j ≤ N , where N is the ϵ-resolution parameter used in the

original construction of Rm. When the error is too large, we increase M and try

again. The cost to compute R̃m̃ is O(Mm2). In a worst-case scenario, M can

grow as large as N . We observe experimentally that this approach is often very

effective, but more work is needed to understand the conditions under which it

is guaranteed that M ≪ N .

5.5.2 Sums of trigonometric rationals

If Sℓ and Gn are exponential sums, then Rm = Sℓ + Gn can be constructed

straightforwardly. However, Rm may be of suboptimal length. We apply the

compression algorithm with ϵ ≈ ϵmach to Rm, where m = ℓ+ n, to find R̃m̃. This

“compression–plus” method is especially useful for tasks that involve repeated

summations and require many recompressions. The compression–plus algo-
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rithm is used automatically in REfit when the ‘+’ operator is used between efun

objects. For summing trigonometric rationals sℓ and gn represented as rfuns,

we simply evaluate the sum and then apply pronyAAA to find rm = sℓ + gn.9

The rfun and efun objects can also be combined in various ways. The syntax

r = s + g adds two rfuns and returns an rfun by default. The expression

[r, R] = s + g automatically retrieves the efun R = ft(r) in addition to

r. When an rfun and efun are summed together, both rfun and efun outputs are

returned by default.

5.5.3 Convolutions of trigonometric rationals

The convolution of two trigonometric rationals sℓ and gn can be constructed in

Fourier space by finding the exponential sum Rm0
= (Fsℓ)(Fgn) = SℓGn. The

product can be computed directly in a closed form, but this results in a large sum

with m0 = ℓn. Sums of this type often have small weights and/or exponential

terms that do not contribute substantially to the sum. To find a shorter sum R̃m̃,

we find an upper bound m on m̃ by determining how many terms in Rm0
have

a negligibly small influence. Then, we apply the compression algorithm using

rectangular Hankel matrices of the form Hjk = Sℓ(j + k)Gn(j + k), 0 ≤ j ≤ M ,

0 ≤ k ≤ m. For efuns, this operation is accessed by typing S .* G. For rfuns,

the command [r, R] = conv(s, g) uses the Fourier and inverse Fourier

transform functions to apply the above scheme, returning r as an rfun and R as

an efun.
9If this proves difficult due to spurious poles, we use the Fourier and inverse Fourier trans-

forms to convert to efuns, perform the addition, and then convert back to an rfun.
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5.5.4 Products of trigonometric rationals

The product of two trigonometric rationals rℓ and sn in the time domain is

equivalent to their convolution in Fourier space. If Rℓ = F(rℓ) and Sn = F(sn)

are each sums of complex exponentials, then

F(rℓsn)(k) = (Rℓ ∗ Sn)(k) =
∞∑

j=−∞

Rℓ(k − j)Sn(j) ≈
Nϵ∑

j=−Nϵ

Rℓ(k − j)Sn(j), (5.9)

where Nϵ is the ϵ-resolution parameter for Sn. The fast evaluation of (5.9) at

M consecutive points is equivalent to a matrix-vector multiply with a Toeplitz

matrix. Since rℓsm is a trigonometric rational with at most 2ℓ + 2n poles, we

apply the compression algorithm to find Gm ≈ F(rℓsn)(k), with m = ℓ + n. If R

and S are efuns, this command is accessed by typing conv(R, S). If rℓ and sn

are represented with rfuns r and s, respectively, then the syntax r.*s returns

a new rfun representing the product. The new rfun is constructed by simply

applying pronyAAA to the function rℓ(x)sn(x).
10

5.5.5 Differentiation

The kth derivative of rm, denoted r(k)m , is a type (km−1, km) trigonometric ra-

tional. However, r(k)m is fundamentally of a different form than the trigonomet-

ric rationals constructed via pronyAAA and the RPM. It has m conjugate-pairs

of poles, and each pole is of multiplicity k. While it is often possible to repre-

sent derivatives with trigonometric rationals having simple poles, it isn’t always

a sensible choice. By default, REfit returns a function handle for evaluating

10If this proves difficult due to spurious poles, we use the Fourier and inverse Fourier trans-
forms to convert to efuns, perform the convolution in Fourier space, and then convert back to
an rfun.
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derivatives (or their Fourier transforms) whenever diff(·,k) is applied to an

rfun (or an efun). However, one can also use diff(·,k,‘type’), to specify

that an efun or rfun should be returned.

Differentiation Fourier space. When rm is represented by the complex expo-

nential sum Rm in Fourier space, the Fourier coefficients of r(k)m are given by

F(r(k)m )(j) = (2πij)kRm(j). The command h=diff(R,k) by default returns a

handle for evaluating this function in Fourier space. If instead, for example,

one types diff(R,k,‘efun’), the RPM is applied to construct a representa-

tion of F(r(k)m ) as a sum of weighted complex exponentials (without polynomial

coefficients).

Differentiation in the time domain. Derivatives of barycentric trignometric ra-

tional interpolants satisfy a recurrence relation and can be expressed in a simple

closed form. To see this, consider the linearization of rγ,tm = nm−1/dm, which can

be differentiated as (rγ,tm dm)
′ = (nm−1)

′. Plugging in the definitions from (5.4)

results in the following formula, which holds everywhere on [0, 1) except at the

interpolating points:

(rγ,tm )′(x) = −π
∑2m

j=1 γj csc
2(πx− πtj)

(
fj − rγ,tm (x)

)∑2m
j=1 γj cot(πx− πtj)

. (5.10)

To evaluate (rγ,tm )′ at the interpolating points t = (t1, . . . , t2m)
T , we use the special

differentiation matrices introduced in [13]. Explicit descriptions of recursive

formulas for computing higher derivatives are also found in [13]. All of this

is encoded within a function handle that is accessed in REfit by applying the

command diff to an rfun.
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5.5.6 Integration

The indefinite integral of a trigonometric rational rm is not itself a trigonometric

rational. In Fourier space, if Rm = F(rm) is a sum of complex exponentials as

in (5.2), then except at k = 0, the Fourier coefficients of F(g), where

g(y) =

∫ y

0

rm(x)dx,

are given by ĝk = Rm(k)/2πik for k ̸= 0. A function handle for evaluating F(g)

is returned when cumsum is applied to an efun. One can also try to fit a new

complex exponential to F(g) by typing cumsum(·,‘efun’), though it may not

be an efficient representation.

If cumsum is applied to an rfun, we supply a handle for g that applies Gauss-

Legendre quadrature [78]. The stable evaluation property of the barycentric

form is advantageous here, which is why we do not instead make use of the

pole-residue form of the rational rm(z) in (5.3). To integrate rm over a finite

interval [a, b] ⊂ [0, 1), the command sum(·,a,b) can be applied to an rfun or

an efun.

5.5.7 Rootfinding and polefinding

The roots of the barycentric trigonometric rational rγ,tm coincide with the eigen-

values of a linear pencil. Specifically, if rγ,tm (ζj) = 0 and µ = e2πiζj , then there is
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nonzero vector y such that Ey = µBy, where

E =



e2πix1 iω1e
2πix1

. . .
...

e2πix2m iω2me
2πix2m

f1 · · · f2m 0


, B =



1 iω1

. . .
...

1 iω2m

0 · · · 0 0


. (5.11)

The pencil (E,B) has at least two infinite eigenvalues and one eigenvalue at

µ0 = 0 corresponding to ζ0 = −∞ (this captures the asymptotic behavior of

rγ,tm ). Once the remaining 2m− 2 eigenvalues are found, the zeros of rγ,tm are im-

mediate. The command roots applied to rfuns or efuns applies this algorithm

and returns real-valued roots. For efuns, this requires first converting to an

rfun via the Fourier transform. The command roots(·,‘all’) additionally

returns complex-valued roots.

The poles of rγ,tm can be found in a similar way: the pencil (Ẽ, B), where Ẽ

is identical to E except that each fj in the last row is replaced by 1, has at least

one infinite eigenvalue. If µ̃j is one of the remaining finite eigenvalues, then

ηj = log µ̃j/2πi is a pole of rγ,tm . This approach does not ensure that the conjugate

symmetry of the poles is exactly preserved. If it is important to exactly preserve

the pole symmetry, it is better to represent rm with an exponential sum Rm.

Residues. We compute the residues of the barycentric interpolant rγ,tm using the

fact that rγ,tm = nm−1/dm, where nm−1 and dm are trigonometric polynomials as

in (5.4). Since the poles of rγ,tm are simple, the residue for a given pole ηj can be

evaluated as

Res(rγ,tm , ηj) =
nm−1(ηj)

d ′
m(ηj)

.

The residues of the poles of F−1(Rm), where Rm is an exponential sum, have

a closed form formula involving the parameters of Rm (see Section 5.3.1). The
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command [res, pol] = Res(·) returns the residues along with the associ-

ated poles.

Minima and Maxima. The commands min or max a return the local minima

(or maxima) attained by the represented trigonometric rational on the interval

[0, 1). The global minimum, for example, can be found by typing min(min(·)).

To compute the extrema, we use an rfun and apply the differentiation formula

in (5.10) to evaluate its derivative. We use this to construct an rfun representing

(rγ,tm )′, find its roots, and then test for concavity. For an application, see Sec-

tion 5.4.2.

5.5.8 Other commands

The REfit package includes several other commands, including commands for

data visualization and common tasks in signal processing, such as the applica-

tion of filters and the computation of cross-correlations. Commands related to

the pole–residue format of the rational r̃m(z) from (5.3) are also available. This

format is closely related to the notion of the z-transform [123], and is important

for analysis and interpretation. It is also possible to construct efun representa-

tions of signals in the time domain, and to build barycentric rational approx-

imations with the nonperiodic AAA algorithm in the frequency domain. We

remark that an independently-developed method that uses these two types of

representations has recently been introduced in [44].
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5.6 Conclusion

We have introduced a framework for signal reconstruction and automated com-

puting that employs efficient representations in both time and frequency space.

Our work integrates ideas from the harmonic analysis community involving

exponential sums and Hankel operator theory [27, 132, 135] with developments

in adaptive barycentric rational interpolation [26, 86, 119]. An implementation

of all of the described methods, as well as access to the examples, is publicly

available in the REfit software package [40].
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CHAPTER 6

CONCLUSIONS

The ADI method was originally introduced in [127] as a means for solving

the heat equation and Poisson’s equation on a square domain. When Poisson’s

equation is discretized on [−1, 1]2 using the second-order finite difference opera-

tor, it results in a large, banded linear system of equations. The main advantage

of ADI at the time was that it reduced this system to two smaller tridiagonal

systems, which each could be solved incredibly efficiently via Thomas’ algo-

rithm [65]. This is all elementary to us now, but at the time, it was a striking

development in computational efficiency. With the advent of the FFT, ADI be-

came no longer useful in this context. However, it has remained an important

and active subject of research in other communities (e.g., as a matrix equation

solver in reduced order modeling and dynamical systems, as a type of splitting

method for solving parabolic PDEs, and as an ADMM scheme in the optimiza-

tion community).

Early motivation for the work in Chapters 2-4 of this dissertation came

from the desire to develop spectrally accurate low rank and optimal complex-

ity solvers for elliptic PDEs, first for simple domains like disks and squares,

but with the larger notion of efficient schemes for more complicated domains in

view. We quickly realized that this was achievable for discretizations that led

to model ADI matrix equations. With this observation, the problem should be

tackled on two fronts: one can try to develop new spectral discretizations for

PDEs that are “ADI-friendly”, and one can also try to expand the regimes for

which ADI is an effective tool. The former issue is taken up by my research

colleague Dan Fortunato in [53]. The latter issue is addressed in Chapters 2-3
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of this dissertation. We first tackled the problem of constructing low rank so-

lutions to Sylvester equations with right hand sides that have singular value

decay, such as right-hand sides derived from the discretization of smooth 2D

functions. This justifies using low rank methods and gives meaningful a priori

estimates on the numerical ranks of solutions. It also supplies a more natural

method for solving PDEs when the right-hand side is stored in low rank form,

such as in the Chebfun software system [45]. The success of the Poisson solvers

in [53] hinges on the fact that their discretizations result in Sylvester equations

AX − XB = F , where the spectral sets of A and B are enclosed on intervals

of the real line and optimal ADI shift parameters are known. To expand on

this idea and develop solvers for more general elliptic equations of splitting or-

der 2, we require approximate solutions to Zolotarev’s third problem for sets

in the complex plane. Our work in Chapter 3 is a substantial step in the right

direction, though there is much remaining work left to do to turn these largely

theoretical results into practical computational tools. We believe that progress

on this problem will require continued work in the direction of recent devel-

opments in conformal mapping [165]. The fusion of these insights with ideas

applied in projection-based iterative methods, such as the rational Krylov sub-

space method [47, 151], will also be useful. A related and highly challenging

set of questions involves developing efficient solvers for generalized Sylvester

equations of the form
∑N

j=1AjXBj = F , which arise in ultraspherical discretiza-

tions of PDEs of higher splitting ranks [159]. An overview of ideas, approaches,

and open questions related to this topic can be found in [151].

A more general theme in our ADI-based work has been the development

of compression methods for computing with matrices via their displacement

structures. The inspiring work in [19] explains why many important matri-
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ces in computational math are of low numerical rank. This idea can be ex-

panded upon and used to explain more complicated compression properties

when one observes that solutions to diagonalizable Sylvester matrix equations

AX − XB = F can always be expressed in terms of Cauchy matrices of the

form Cjk = 1/(λj(A)−λk(B)). The use of these matrices naturally invites analo-

gies with the fast multipole method and related ideas involving the modeling of

pairwise interactions between particles. Future work that builds on Chapter 4

looks to develop a more unified framework for understanding the low rank

properties of the Cauchy-like matrices that are connected to Toeplitz, Hankel,

Vandermonde and related matrices via fast transforms. A related direction of

importance for ADI-based compression schemes includes the development of

new compression methods and theoretical results for bounding the compress-

ibility of d-dimensional tensors in various formats [149].

Two observations inspired the work in Chapter 5: The first comes from [81],

where in devising a scheme for solving Burger’s equation, the authors com-

ment on the notion of a “numerical calculus” for working with rational repre-

sentations of functions. Such a calculus would allow one to adaptively com-

pute efficiently with functions containing algebraic singularities by combining,

multiplying, convolving, differentiating, and integrating them using optimal

rational representations. Connections between exponential sums, rational func-

tions, and finite dimensional Hankel operator theory lie at the heart of this

idea [27, 132]. The introduction of REfit is meant to be a stabilized version of

this rational-based numerical calculus.

The second observation that motivated our work in Chapter 5 was the explo-

sion of developments in computational mathematics (for solving PDEs [81, 90],
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solving nonlinear eigenvalue problems [108], creating model order reduction

schemes [98, 140], evaluating functions of matrices [68], constructing conformal

maps [9, 165], and more) that have been made possible with data–driven ratio-

nal approximation methods such as the AAA algorithm and Prony’s method.

This is largely because these approaches make approximation by rationals ac-

cessible, flexible, and automatic. In the context of signal reconstruction, truly

nonlinear rational approximation methods have been treated as somewhat ex-

otic in comparison to methods where fixed collections of basis vectors are first

selected. Our work makes the many benefits of data-driven rational approxima-

tion methods readily available, with schemes that are robust against noise and

corruption. We hope this will open up new possibilities for tackling problems in

regimes that are currently out of reach in areas such as biomedical monitoring,

geophysics, and data-driven computation more generally.
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APPENDIX A

COMPLEXITY ANALYSIS FOR ADI-BASED HSS FACTORIZATION

We provide a complexity analysis of the ADI-based construction of the HSS

matrix C̃ from Section 4.4.4 in this section. In Table A.1, we list the cost as-

sociated with each step of finding a fADI-based interpolative decomposition

X ≈ UX(J, : ), where X is a submatrix of C of size m× ñ, |J | = r, and

ñ ≥ m > r. Here, we denote by ρ the displacement rank of C. For transformed

Toeplitz matrices, ρ = 2. For the QR decomposition, we include the costs asso-

ciated with CPQR (used in practice), rather than SRRQR (which gives stronger

theoretical error bounds).

We count the cost for finding approximate HSS row factorizations and note

that the cost for the HSS column factorizations is the same. Assume that ϵ is pro-

vided and suppose that for all relevant submatrices X , rankϵ(X) ≤ r. Suppose

that at the finest partition level, the blocks Cv are of sizem×m. For each v that is

a leaf node of T , about 3mr2 + 4mr + 3mρ− 5/3r3 flops are required according

to Table A.1 to find the pair Uv, Jv in (4.16). In total, there are n/m leaf nodes, so

constructing all of the leaf node factorizations costs about η1 flops, where

η1 = 2
n

m

[
3mr2 + 4mr + 3mρ− 5/3r3

]
. (A.1)

For non-leaf nodes, we replace m in Table A.1 with 2r (see Section 4.4.3). The

non-leaf node factorizations therefore require about η2 flops, where

η2 = 2
n

m

[
13

3
r3 + 8r2 + 6rρ

]
. (A.2)

It follows that in total, the displacement-based HSS factorization requires about

η flops, with

η = η1 + η2 ≈ n

(
6r2 + 8r +

16

3

r3

m
+ 16

r2

m
+ 12ρ

r

m

)
. (A.3)
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Step Method # flops section
1. Compute Z in X(k) = ZW ∗ fADI [160] 4mr + 3mρ sec. 1.4.2
2. Compute R and P in Z∗P = QR CPQR [65, Ch. 6.4] 2mr2 − 2r3/3 sec. 4.4.4
3. Form U by computing R2R

−1
1 Back substitution mr2 − r3 sec. 4.4.4

Table A.1: Computational cost for each subroutine used to find X ≈ UX(J, : ),
where X is of size m× ñ and of numerical rank r.

A complexity count for the HSS factorization via randomized sampling is

provided in [180]. To compare complexities with the ADI-based method, we

treat the oversampling factor [79] required in the randomized method as negli-

gible. Just as with the ADI-based approach, the randomized sampling approach

in [180] allows for the use of either CPQR or SRRQR. We assume that both meth-

ods are applied using CPQR. We assume the rank of each low rank factorization

used in both HSS approximations is at most r. Blocks at the finest partition level

are set as size m = 2r, and we set ρ = 2. The final complexity counts for both

methods are given in the first column of Table A.2. In Figure 4.6, we compare

the practical performance of the two methods.1

To get an overall picture of the complexity of the Toeplitz solver (Algo-

rithm 1), we include in Table A.2 the cost for solving C̃x̃ = b̃ with the ULV

solver in [33], as well as the cost associated with assembling the HSS matrix C̃.

Recall that for each v in T , C̃v = UvBvV
∗
v , withBv = C(Jv, Kv). In the HSS factor-

ization step, we find and store the indices Jv, Kv, but to use C̃ in Step 3, we must

assemble eachBv, as well as the incompressible diagonal blocks at the finest par-

tition level. This is done efficiently with the identity C = C ◦ LH∗ + Cdiag, where

Cjk = 1/(ω2j−ω2k) for j ̸= k and Cjj = 0. Using this, eachBv andm×m diagonal

block can be populated in about (1 + 2ρ)r2 and (1 + 2ρ)m2 flops, respectively.

1Our implementation includes a few additional cost-saving measures not reflected in the
above complexity analysis (see Section 4.4.5). These do not impact the asymptotic complexity
of the solver.
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HSS factorization HSS assembly Solving C̃x̃ = b̃

Randomized (80r log n+ 74
3
r2)n

15rn 42r2n+ 37rn
ADI-based (26

3
r2 + 16r)n

Table A.2: The cost for computing C̃, an HSS approximation to C, is given for
two different compression strategies. Here we set ρ = 2, and let m = 2r be the
size of the blocks at the finest partition level in T , where the (ϵ, T )-rank of C is
r. The cost for assembling C̃ and solving C̃x̃ = b̃ with the ULV solver described
in [33] (see also [180]).

Since our bounds indicate that r = O(ρ log n log(1/ϵ)), the asymptotic complex-

ity of our superfast Toeplitz-like solver is O(ρ2n log2 n log2(1/ϵ)). Furthermore,

as shown in Table A.2, the constants involved are reasonable enough that the

solver is efficient, even for moderate-sized n.
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Painlevé equations. J. Comput. Phys., 230(15):5957–5973, 2011.

[53] Daniel Fortunato and Alex Townsend. Fast Poisson solvers for spectral

methods. IMA J. Num. Anal., 40(3):1994–2018, 2020.
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