Computing with Functions on the Sphere and Disk

Heather Wilber | Boise State University o Dr. Alex Townsend | MIT o Dr. Grady Wright | Boise State University

_ Overview Low rank approximation of BMC functions
The Double Fourier Sphere Method
| | | o Synthesizing a classic technique known as the double Fourier sphere (DFS) method [4, 5, 6] together with The function f(), 6) is said to be
Let /(x, y, z) be defined on the surface of the unit sphere. 7 is periodic along the new algorithmic techniques in low rank function approximation [2,8], we develop a new method of . rank 1 if it is nonzero and can be written as (), 6) = c(6)r()\).
great circles passing through its poles, but this feature is lost transtorming f ’{0 a_ approximation for computation with functions on the sphere and disk. This approximation method preserves . rank at most K if it can be expressed as a sum of K rank 1 functions.
rectangular grid: T := f(x,y,2) — f(),0), (A, 0) € [, «| x [0, 7]. The function 7, the bi-periodicity of the sphere, maintains smoothness over the poles in every procedure, and is Most functions are of infinite rank, but smooth functions can often be approximated
A doubled-up extension of £, recovers this periodicity. near-optimal in its underlying interpolation. It resolves many drawbacks encountered by previous methods,

. , _ , | , well by a finite, low rank function:
and powers a suite of fast, scalable algorithms for computing with functions on the sphere and disk.

K
-~ ~ The continuous SVD (Karhunen-Loeve

2 f(N0) =~ ()N 0)= a.c,(0)ri( ). N . .

(2) (A, 0) = (1. 0) 121: RIS expansion) is an optimal way to derive

such an approximation [7], but it is computationally expensive. Our method gives a
//[;/ [f f ‘a\ \\\ Constructing an approximation: (a) The function near-optimal approximation with near-optimal computational complexity.
; i f(x = — S
i e . V,Z) = cos(xz — siny) on the sphere, constructed _ _ ...
- P with spherefun. (b) The “skeleton” used to lterative Gaussian elimination (GE)
¥ ] . .
w i approximate f. Samples of f are only taken along the _ _ _ . L
U ﬁ . }/f blue lines. The underlying tensor grid (in gray) shows the I’[era’uvzI GbE |sha ne.ar-optlma! melthold fo; (jl\erlevmg allor:/v-rank apprOX|.matt|oF? [?]. It.
| - sample points required without low rank techniques. proceeds by choosing a maximal value (A, 0.), which serves as a pivot. Performing
, - = a GE-step with the pivot results in a reduced-rank update of f:
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The DFS method applied to the world atlas. (a) Outline of the land masses plotted on the surface of C : O : h h _ f (3) (A, 0)  «— 1A 0) O 0) | e e oE
the sphere. (b) The projection of the land masses using latitude-longitude coordinates. (c) Land omputing with tunctions on the sphere: spherefun software _ B ’
masses after applying the DFS method. The result is a “function” that is periodic in both longitude A rank 1 approx. to f 10" )
and latitude. We implement our methods in Chebfun, which is an open-source software package in MATLAB. These | | ]
libraries make function evaluation, integration, differentiation, vector calculus, root-finding, plotting and Running the algorlthm forward K steps ol
Preservation of symmetry = Smoothness over poles many other computations easy, accurate, and fast. subtracts a series of K rank 1 terms from f. _E
| This series of terms, when added together, 10
The transformation T also creates artificial singularities at the poles of f. The ( \ reproduces a rank K approximation to f. 10"}
extended function f exhibits a particular form of symmetry, which we call / Problematically, this method does not 1077} : ; : i
block-mirrcz[.r-cetntrcr)]symmetricf (BMC%..Preser\f[ir:]g thisﬂl]_%l\/IC lsymmetry In our Integration: [ fdQ — sum2 (£) preserve the BMC structure of 7. ark
roximation N nfor m r . : _ :
approximation tecnniques enitorces 7 IS Smootn over tne poles f = spherefun (Q(x,vy, z) ’ I Structure-preser\”ng GE
(a 1+x+y. 24x. " 2. xy+x. " 4+y. 5+ T A . C
(x.%y.%2) . 2) ; AN —g Adi b To preserve BMC structure, we must simultaneously eliminate
1 intf = sum2(f); o A_a.f/ ) o symmetric pairs of rows and columns, as shown in the figure (left). A
exact = 216xpi/35; f 9y~ singox T SnAcostz, IR block-pivoting strategy with a 2 x 2 matrix accomplishes this.
i error = 1ntf-exact Ditt 5 a5 o A T
ifferentiation: o=, -~ > — diff _ _ _
3.552713678800501e-15 ) P o o Define a matrix M based on the BMC-symmetric values:
= 0 f = spherefun (@ (lam, th) i

p— p—
~ ~ ~ ~

cos (1+2*pi* (cos (lam-0.2) .+*sin(th)) v — fN" —m,0%) F\,0%) | |[f(\N —m,07) (A0 | [ab
Vector calculus: div, grad, curl (and all that) tpixsin(pixcos(th)))); N =, =00 O, =00 | F(NL 0T (N = 0% |ba]
flip(h) | flip(g) dfdy = diff(f, 2); - o - -
_ _ Our structure-preserving GE step, analogous to (3), is given by
AN Poisson’s Equation: At =f — Poisson (£f) e
e o s s 2 a0 ; 3 exact = spherefun.sphharm(6,0) f(\,0) «—  f(\0)— [f(\ —T,0) ?()\*,9)] M 7 g\ | 61 :
The definition of a BMC function. (a) The function f(, #) written in terms of a quadrant | function + sqrt (14/11) xspherefun.sphharm(6,5) ; A =07,
h(\, 0), and a quadrant Il function g(\, ¢). The double Fourier extension of f gives a BMC function, f, f = —d2xexact; where M« is the e-pseudoinverse of M.
that is defined by extending f to quadrants lll and IV as described in the figure. (b) lllustration of a u = spherefun.Poisson(f,0,16); surf (v)
BMC function. err = norm(u-exact, 2) e : :
Q - 3 7040843816864 750—14 Algorithm: Structure-preserving GE on BMC functions Pseudocode for our
~— : e— ~ - ~
- ' Setfy=0and gy = f i
Why not. USe sphgrlcal h.aI‘mOI‘I.ICS? f - spherefun( @(1,t) ; 0 0 structure-preserving
The spherical harmonic expansion of f is cos (4%1) .xcos (t) .*sin(t)."4 Vv = vort(u); fork=1.23 ... GE procedure on
o —cos (t) . 2); quiver (u) b BMC functions. This
f(\,0) = Z Z c, YN, 6), (1) surt (f) surt (v) Find (A, 6,) such that M = g | where a= & 4(\_1 — 7,0 ) and is a continuous
(=0 m=—( ) T M the S e of M idealization and in
where Y," is the spherical harmonic function with degree ¢ and order m. Analogous b= E-1(Me-1, k1) maximizes o4 (M), the largest singular value o practice we use a
to trigonometric expansions, spherical harmonics are the instinctive mathematical Computing with functions on the disk: diskfun software 8 = 11— [Be 1O\ — 1,60) B4\, 0)] M ex—1(A, Ok) discretization of this
: - - - . . . . . . - - | B ex_1(A, —0
choice for representing functions on the surface ot the sphere [1]. However, highly A variant of the double Fourier method extends functions on the disk to BMC functions. We apply a similar o o ‘((A , )"_)- procedure and
adaptlvg dlscrgtlzatlons are computqtlonally unfeasible using such methods. Our GE algorithm for constructing approximants. fi = Tt — [B1 (k= 7.0) B (M, )] M7 | k_1()\ o | terminate it after
alternative setting enables fast algorithms via the FFT. T % TRV TR finite number of
L : _ end steps.
Algebra with disk harmonics: diskharm /.
The sum of six eigenfunctions of the S—
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IS given by roots (h) and displayed in red.
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