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The Double Fourier Sphere Method

Let f (x , y , z) be defined on the surface of the unit sphere. f is periodic along the
great circles passing through its poles, but this feature is lost transforming f to a
rectangular grid: T := f (x , y , z) −→ f (λ, θ), (λ, θ) ∈ [−π, π]× [0, π]. The function f̃ ,
A doubled-up extension of f , recovers this periodicity.
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The DFS method applied to the world atlas. (a) Outline of the land masses plotted on the surface of
the sphere. (b) The projection of the land masses using latitude-longitude coordinates. (c) Land
masses after applying the DFS method. The result is a “function” that is periodic in both longitude
and latitude.

Preservation of symmetry = Smoothness over poles

The transformation T also creates artificial singularities at the poles of f . The
extended function f̃ exhibits a particular form of symmetry, which we call
block-mirror-centrosymmetric (BMC). Preserving this BMC symmetry in our
approximation techniques enforces f̃ is smooth over the poles.

(a) (b)

The definition of a BMC function. (a) The function f (λ, θ) written in terms of a quadrant I function
h(λ, θ), and a quadrant II function g(λ, θ). The double Fourier extension of f gives a BMC function, f̃ ,
that is defined by extending f to quadrants III and IV as described in the figure. (b) Illustration of a
BMC function.

Why not use spherical harmonics?
The spherical harmonic expansion of f is

f (λ, θ) =
∞∑
`=0

∑̀
m=−`

c`,mY m
` (λ, θ), (1)

where Y m
` is the spherical harmonic function with degree ` and order m. Analogous

to trigonometric expansions, spherical harmonics are the instinctive mathematical
choice for representing functions on the surface of the sphere [1]. However, highly
adaptive discretizations are computationally unfeasible using such methods. Our
alternative setting enables fast algorithms via the FFT.
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Overview

Synthesizing a classic technique known as the double Fourier sphere (DFS) method [4, 5, 6] together with
new algorithmic techniques in low rank function approximation [2,8], we develop a new method of
approximation for computation with functions on the sphere and disk. This approximation method preserves
the bi-periodicity of the sphere, maintains smoothness over the poles in every procedure, and is
near-optimal in its underlying interpolation. It resolves many drawbacks encountered by previous methods,
and powers a suite of fast, scalable algorithms for computing with functions on the sphere and disk.
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Constructing an approximation: (a) The function
f (x , y , z) = cos(xz − sin y) on the sphere, constructed
with spherefun. (b) The “skeleton” used to
approximate f . Samples of f are only taken along the
blue lines. The underlying tensor grid (in gray) shows the
sample points required without low rank techniques.

Computing with functions on the sphere: spherefun software

We implement our methods in Chebfun, which is an open-source software package in MATLAB. These
libraries make function evaluation, integration, differentiation, vector calculus, root-finding, plotting and
many other computations easy, accurate, and fast.

Integration:
∫
S2 f dΩ −→ sum2(f)

f = spherefun(@(x,y,z)
1+x+y.ˆ2+x.ˆ2.*y+x.ˆ4+y.ˆ5+
(x.*y.*z).ˆ2);
intf = sum2(f);
exact = 216*pi/35;
error = intf-exact

3.552713678800501e-15

Vector calculus: div, grad, curl (and all that)

f = spherefun( @(l,t)
cos(4*l).*cos(t).*sin(t).ˆ4
-cos(t).ˆ2);
surf(f)

u = curl(f);
v = vort(u);
quiver(u)
surf(v)

f
∂f
∂y

=
cosλ
sin θ

∂f
∂λ

+ sinλ cos θ
∂f
∂θ
,

Differentiation: ∂
∂x ,

∂
∂y ,

∂
∂z −→ diff

f = spherefun(@(lam,th)
cos(1+2*pi*(cos(lam-0.2).*sin(th))
+pi*sin(pi*cos(th))));
dfdy = diff(f, 2);

Poisson’s Equation: ∆S2u = f −→ Poisson(f)

exact = spherefun.sphharm(6,0)
+ sqrt(14/11)*spherefun.sphharm(6,5);
f = -42*exact;
u = spherefun.Poisson(f,0,16); surf(v)
err = norm(u-exact,2)

3.794084381686475e-14

Computing with functions on the disk: diskfun software
A variant of the double Fourier method extends functions on the disk to BMC functions. We apply a similar
GE algorithm for constructing approximants.

Algebra with disk harmonics: diskharm
The sum of six eigenfunctions of the
Laplacian produce a rank 6 function.

nu = [1, 1, 2, 3, 5, 8];
w = (-1).ˆ(1:6).*(0:5);
G = diskfun();
for j=1:6
G = G +
diskfun.diskharm(w(j),nu(j));
end

surf(G)

contour(h) surf(h)

Rootfinding: roots
The zero contour of h = 2− cos 4x + sin(7πx sin(y − .1))
is given by roots(h) and displayed in red.

Low rank approximation of BMC functions

The function f̃ (λ, θ) is said to be
I rank 1 if it is nonzero and can be written as f̃ (λ, θ) = c(θ)r (λ).
I rank at most K if it can be expressed as a sum of K rank 1 functions.
Most functions are of infinite rank, but smooth functions can often be approximated
well by a finite, low rank function:

(2) f̃ (λ, θ) ≈ f̃k(λ, θ) =
K∑

j=1

djcj(θ)rj(λ). The continuous SVD (Karhunen-Loève
expansion) is an optimal way to derive

such an approximation [7], but it is computationally expensive. Our method gives a
near-optimal approximation with near-optimal computational complexity.

Iterative Gaussian elimination (GE)

Iterative GE is a near-optimal method for deriving a low-rank approximation [8]. It
proceeds by choosing a maximal value f̃ (λ∗, θ∗), which serves as a pivot. Performing
a GE-step with the pivot results in a reduced-rank update of f̃ :

(3) f̃ (λ, θ) ←− f̃ (λ, θ)− f̃ (λ∗, θ)f̃ (λ, θ∗)

f̃ (λ∗, θ∗)︸ ︷︷ ︸
A rank 1 approx. to f̃

.

Running the algorithm forward K steps
subtracts a series of K rank 1 terms from f̃ .
This series of terms, when added together,
reproduces a rank K approximation to f̃ .
Problematically, this method does not
preserve the BMC structure of f̃ .

Structure-preserving GE
To preserve BMC structure, we must simultaneously eliminate
symmetric pairs of rows and columns, as shown in the figure (left). A
block-pivoting strategy with a 2× 2 matrix accomplishes this.

Define a matrix M based on the BMC-symmetric values:

M =

[
f̃ (λ∗ − π, θ∗) f̃ (λ∗, θ∗)

f̃ (λ∗ − π,−θ∗) f̃ (λ∗,−θ∗)

]
=

[
f̃ (λ∗ − π, θ∗) f̃ (λ∗, θ∗)

f̃ (λ∗, θ∗) f̃ (λ∗ − π, θ∗)

]
=

[
a b
b a

]
.

Our structure-preserving GE step, analogous to (3), is given by

f̃ (λ, θ) ←− f̃ (λ, θ)−
[
f̃ (λ∗ − π, θ) f̃ (λ∗, θ)

]
M+ε

[
f̃ (λ, θ∗)

f̃ (λ,−θ∗)

]
,

where M+ε is the ε-pseudoinverse of M.

Algorithm: Structure-preserving GE on BMC functions
Set f̃0 = 0 and ẽ0 = f̃

for k = 1,2,3, . . . ,

Find (λk , θk) such that M =

[
a b
b a

]
, where a = ẽk−1(λk−1 − π, θk−1) and

b = ẽk−1(λk−1, θk−1) maximizes σ1(M), the largest singular value of M

ẽk = ẽk−1 −
[
ẽk−1(λk − π, θ) ẽk−1(λk , θ)

]
M+ε

[
ẽk−1(λ, θk)

ẽk−1(λ,−θk)

]
f̃k = f̃k−1 −

[
ẽk−1(λk − π, θ) ẽk−1(λk , θ)

]
M+ε

[
ẽk−1(λ, θk)

ẽk−1(λ,−θk)

]
end

Pseudocode for our
structure-preserving
GE procedure on
BMC functions. This
is a continuous
idealization and in
practice we use a
discretization of this
procedure and
terminate it after a
finite number of
steps.

Geometric convergence for sufficiently analytic functions

Theorem: Let f̃ : [−π, π]× [−π, π]→ R be a BMC function such that f (λ, ·) is
continuous for any λ ∈ [−π, π] and f (·, θ) is analytic and uniformly bounded in a
stadium S of radius (1 + α)ρπ, ρ > 1, for θ ∈ [−π, π].

Then, as k →∞, ||ẽk ||∞→ 0. That is, the BMC preserving GE procedure converges.
Furthermore, this convergences is geometric.
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