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When are rationals useful?

When our toolbox is limited to the basic arithmetic operations (+, —, x, +),

the functions we can make are polynomials and rationals.
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Applications in signhal processing

Rationals are useful for...

e recovering signals with slowly decaying spectral content.
(approximations to signals with sharp features, rapid transitions)

e representing functions sparsely in both frequency and time domains.
e filtering noise.

e imputing missing data.

e extrapolation.

e identifying/locating singularities.
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Applications in signal processing:

When are rationals useful?

Signal reconstruction: geophysics and seismology, biomedical monitoring,
extrapolation/superresolution, filtering

[Belykin and Monzon (2009), Moitra (2018), Fridli, Losci and Schipp (2012), Vetterli, Marziliano, and
Blu (2002)]

Feature extraction: abnormality detection, classification, parameter recovery
[Gilian (2016), Moitra (2018) , Peter and Plonka (2013), Potts and Tasche (2013)]

Related methods: wavelets, RBFs, splines ”

[De Boor, Debnath, Wendland,Unser and Blu, and many more]

Reconstructed ECG signal in REfit
(W., Damle, Townsend, 2022)




Data-driven rational approximation

for signal reconstruction

GOAL: Develop software tools for working adaptively with
trigonometric rational approximations to periodic functions.

e “Near-optimal” rational approximations

e Data-driven: no tuning parameters

e Works with noisy, under-resolved, missing data.

e Basic tools: algebraic operations (sums, products),
differentiation, integration, filtering, rootfinding,
polefinding, visualization, etc.

Reqgularized -_— The AAA
Prony’s method algorithm

(Fourier domain) D ———————— (time domain)




Trigonometric rational functions

f is periodic, real-valued, continuous on [0, 1), fol f(6)do = 0.

We seek r,, = f, where




Trigonometric rational functions

In Fourier space

Key observation: The Fourier series of r,;, can be efficiently represented

by a short sum of complex, decreasing exponentials.
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If r,,(z) = Z (P )€™ then for k > 0,

k=—o0

(’rm k — ij 7

where \; = 2min;, Re(n;) > 0.

(Gaspard de Prony)

[ Adamjan, Arov, and Krein (1971), Beylkin and Monzén (2005, 2009), Pototskaia and Plonka (2016),
Potts and Tasche (2010) |



Exponential sum format

Advantage for reconstruction: Filter for Gaussian noise

Example: Extracting pulses in the Pacific Blue whale’s song.

6001 noisy samples from a hydrophone type (245, 246) trigonometric rational
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[Peter & Plonka (2013), Potts & Tasche (2013), M. Vetterli, P. Marziliano, & T. Blu (2002)]



Exponential sum format

Advantage for postprocessing: Efficient recompression

“This formulation allows us to develop a numerical calculus that
includes functions with singularities and sharp transitions...”

-Haut, Beylkin, Monzon (2012)
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More advantages:

[ Adamjan, Arov, and Krein (1971), Beylkin and Monzon (2005), Haut, Beylkin and Monzon (2012)
Pototskaia and Plonka (2016) ]



Trigonometric barycentric
rational functions

(P. Henrici) (J.P. Berrut)

Key properties

e 1, is a type (m — 1, m) trigonometric rational.

e interpolates f at t;: ri(t;) = f;.
e numerically stable evaluation for x € [0, 1). RCs .

Construct via the PronyAAA algorithm 3. Nakatoukasa) (LN, Trefethom (0. Sote)

Key Idea: greedily build up an interpolant, one point at a time, choose weights
via linearized least squares fit to data.

[ Berrut (2005) , Berrut and Trefethen (2004), Henrici (1979), Higham (2004), Austin and Xu (2017),
Nakatsukasa, Trefethen, & Sete (2018), Antoulas & Anderson (1986), Berrut (2005), Badoo(2021) ]



PronyAAA algorithm

Advantage for reconstruction: Imputes missing data
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REfit: barycentric + exponential
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Exponential sums

>0 iy cot (m(x — 1))

D250 cot (m(x — t)

Barycentric form

Robustness to noise

Imputing missing data

Filtering and recompression  Differentiation (closed-form formula)

Pole symmetry preservation

Stable evaluation

convolution, cross-correlations Rootfinding, identifying extrema




REfit: barycentric + exponential

Problem: Fourier coefficients decay slowly, sample is underresolved...
How can I construct an exponential sum representation of r,, ~ f7

(Fourier space) (Time)
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REfit: barycentric + exponential

Problem: Fourier coefficients decay slowly, sample is underresolved...
How can I construct an exponential sum representation of r,, ~ f7

(Fourier space) (Time)

(Prony’s method alone) | 107
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REfit: barycentric + exponential

Problem: Noisy data, limited spatial resolution...
How can I construct a barycentric representation of r,,, ~ f7

(Fourier space) (time domain)
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Thank you!

REfit for data-driven rational computing:
(open-source package for MATLAB)

My website:
heatherw3521.github.io

Other AMAZING rational approximation tools:
AAA in Chebfun:
www.chebfun.org (Nakatsukasa, Trefethen, Sete)

RKfit for rational Krylov subspace approximation:
guettel.com/rktoolbox/index.html (Berljafa, Glttel)



https://www.chebfun.org
http://guettel.com/rktoolbox/index.html
http://heatherw3521.github.io

Begin Extra Slides




PronyAAA algorithm

Advantage for postprocessing: rootfinding

If r&7(¢;) = 0 and p = €*™%  then Ey = puBy, where

B 627T73:131 2T n 1

W1 E W1
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There are 2m — 2 finite, nonzero eigenvalues.

More advantages




When are rationals useful?

Matrix function evaluation: (Gawlik, 2020), (Nakatsukasa and Gawlik, 2021),
(Braess and Hackbusch, 2005, 2009) (Ward, 1977) (Gosea and Guttel, 2020)

and many more...

Eigendecompositions/Polar decomposition: ( Nakatsukasa and Freund, 2015),
(Saad, EI-Guide, and Miedlar), (Tang and Polizzi, 2014), (Guttel, 2010), (Ruhe, 1994

and many more...

Solving linear systems/matrix equations: (Ruhe, 1994),(Druskin and
Simoncini, 2011), (Sabino, 2008), (Kressner, Massei, and Robol, 2019),
(Benner, Truhar, and Li, 2009), (W. And Townsend, 2018)many more...

Solving PDEs: (Haut, Beylkin and Monzon 2015), (Trefethen and Tee, 2006 ), (Gopal and
Trefethen, 2019) , (Haut, Babb, Martinsson, and Wingate, 2016), many more...

Quadrature, conformal mapping, analytic continuation, digital filter design,
reduced order modeling... (See Approximation Theory and Practice, Ch. 23)




When are rationals useful?
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(purple = degree 200 polynomial, black = type (59, 60) rational)



PronyAAA algorithm

Key Idea: greedily build up an interpolant, one point at a time.

Start with sampling locations T' = {x1,...,zN}.

Suppose the nodes are t = {t1,...,tom} C T

(Y. Nakatsukasa) (L.N. Trefethen) (0. Séte)

Determining the barycentric weights:

' 2
! (@) = n;mlx()x) ’ IWHG% z; €T\t (F(@5)dm(25) = m—1(25))"
r) (2)dm () = N1 () st Y St =0, |l =

Choosing the next interpolating point:

tom41 = argmaXxET\t‘vaﬁ(xj) — f(z;)

[Nakatsukasa, Trefethen, & Sete (2018), Antoulas & Anderson (1986), Berrut (2005), Badoo(2021) ]




Exponential sums to barycentric interpolants

S s ot (n(e 1)
>0 5 cot (n(e — 1)

Exact recovery is an ill-conditioned problem: The choice of ¢ matters greatly:.

Idea 1: Apply 2m steps of PronyAAA. (chooses points via greedy residual minimization)

Can be numerically unstable. Loss of accuracy/poles occurring on the interval!




Exponential sums to barycentric interpolants

S s ot (n(e 1)
>0 5 cot (n(e — 1)

Exact recovery is an ill-conditioned problem: The choice of ¢ matters greatly:.

Apply 2m steps of PronyAAA. (chooses points via greedy residual minimization)

Can be numerically unstable. Loss of accuracy/poles occurring on the interval!

Idea 2: Be greedy about numerical stability instead!

(A new pivoting strategy for AAA based on column-pivoted QR + stabilization)




PronyAAA algorithm

_ > 5 f5 ot (m(z — t5))
" > 5 cot (m(x — t5)

Where are the poles?
Nothing explicitly enforces that poles are located off [0, 1).

Benign spurious poles: Can be eliminated easily with AAA cleanup routine.

a PO(Q
o 24Y0
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Pernicious spurious poles: cannot be eliminated without strongly impacting accuracy.

Pernicious spurious poles appear when...
1. Data is not modeled well by type (m — 1, m) trigonometric rationals.

2. We demand too much accuracy (e.g., machine precision).



Prony’s method

Given (cg,c1,...,Copr11), TECOVET
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How can we find each ;7 (Gespard de Prong)
M A l
Set p(z) =1[;2:(z =), vy =e 7. p(z) = Zpkzk (Prony’s polynomial)
k=0
If we can determine p = (po,...,Par), then this becomes a rootfinding problem.
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[Belykin & Monzon (2005, 2009) , Peter & Plonka (2013), Potts & Tasche (2013)]



barycentric to exponential sum

>0 iy cot (m(x — 1))
>0 cot (m(a — t)

Ry(k) =) wjet* ro (@) =
j=1

Key ldea: Approximate );, and use the “Prony principle”.

¢ Find the poles of r%¥ — approximate each ;.

e Evaluate r’Y at 2N + 1 points — N Fourier coefficients.

o Solve Vw = s, where s is an O(m) sample of coeffs.

[Miller (1970), Moitra (2016), Transtrum, Matcha and Sethna (2010)]



exponential sum to barycentric:

CPQR-selected interpolation points
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exponential sum to barycentric:

CPQR-selected interpolation points

T cot (w(x —t5))
>0 cot (w(x — t5))
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Greedily select columns to form the most well-conditioned submatrix.

LoR L1| L2

Column-pivoted QR (CPQR) [Golub & Busigner (1965), Chandrasekaran & Ipsen (1994), Gu & Eisenstat (1996)]

1. CPQR to choose candidates for barycentric nodes.

2. Regularization procedure: Constrained optimization to subselect from
candidate nodes + find weights v = {v1,...,%2m }-



AAA-selected and

CPQR-selected interpolation points

Example: f(x) =|sin(w(x — 1/2))| — 7/2

ry, = apply PronyAAA to data directly.
ro, = apply Prony’s method to Fourier coeflicients to get R,, then compute

FYR,) =r, using CPQR-selected barycentric nodes.
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AAA-selected and CPQR-selected poles

flz) = [sin(m(z —1/2))] — 7/2

ry, = apply PronyAAA to data directly.

ro, = apply Prony’s method to Fourier coeflicients to get R,, then compute
FYR,) = r, using CPQR-selected barycentric nodes.
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Very different pole configurations,

similar clustering properties.

107 107 107 107 10°
distances from pole to singularity

[Nakatsukasa , Weideman & Trefethen (2021)]



